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1 Preliminaries

The NPStat package provides a C++ implementation of several nonparametric statistical
modeling tools together with various supporting code. Nonparametric modeling becomes
very useful when there is little prior information available to justify an assumption that the
data belongs to a certain parametric family of distributions. Even though nonparametric
techniques are usually more computationally intensive than parametric ones, judicious use
of fast algorithms in combination with increasing power of modern computers often results
in very practical solutions — at least until the “curse of dimensionality” starts imposing its
heavy toll.

It will be assumed that the reader of this note is reasonably proficient in C++ program-
ming, and that the meaning of such words as “class”, “function”, “template”, “method”,
“container”, “namespace”, etc. is obvious from their context.

The latest version of the package code can be downloaded from http://npstat.hepforge.org/
Most classes and functions implemented in NPStat are placed in the “npstat” namespace.
A few functions and classes that need Minuit2 [1] installation in order to be meaningfully used
belong to the “npsi” namespace. Such functions and classes can be found in the “interfaces”
directory of the package.

When a C++ function, class, or template is mentioned in the text for the first time, the
header file which contains its declaration is often mentioned as well. If the header file is not
mentioned, it is most likely “npstat/stat/NNNN.hh”, where NNNN stands for the actual
name of the class or function.

An expression “I(Q)” is frequently employed in the text, where Q is some logical propo-
sition. I(Q) is the proposition indicator function defined as follows: I(Q) = 1 if Q is true
and I(Q) = 0 if Q is false. For example, a product of I(0 ≤ x ≤ 1) with some other math-
ematical function is often used to denote some probability density supported on the [0, 1]
interval. Note that I(¬Q) = 1− I(Q), where ¬Q is the logical negation of Q.

2 Data Representation

For data storage, the NPStat software relies on the object serialization and I/O capabilities
provided by the C++ Geners package [2]. Geners supports persistence of all standard library
containers (vectors, lists, maps, etc.) including those introduced in the C++11 Standard [3]
(arrays, tuples, unordered sets and maps). In addition to data structures supported by
Geners, NPStat offers several other persistent containers useful in statistical data analysis:
multidimensional arrays, homogeneous n-tuples, and histograms.

Persistent multidimensional arrays are implemented with the ArrayND template (header
file “npstat/nm/ArrayND.hh”). This is a reasonably full-featured array class, with support
for subscripting (with and without bounds checking), vector space operations (addition,
subtraction, multiplication by a scalar), certain tensor operations (index contraction, outer
product), slicing, iteration over subranges, linear and cubic interpolation of array values to
fractional indices, etc. Arrays whose maximum number of elements is known at the compile
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time can be efficiently created on the stack.
Homogeneous n-tuples are two-dimensional tables in which the number of columns is

fixed while the number of rows can grow dynamically. The stored object type is chosen
when the n-tuple is created (it is a template parameter). For homogeneous n-tuples, storage
type is the same for every column which allows for more efficient optimization of memory
allocation in comparison with heterogeneous n-tuples.1 Two persistent template classes are
provided for homogeneous n-tuples: InMemoryNtuple for n-tuples which can completely fit
inside the computer memory (header file “npstat/stat/InMemoryNtuple.hh”) and Archived-
Ntuple for n-tuples which can grow as large as the available disk space (header file “np-
stat/stat/ArchivedNtuple.hh”). Both of these classes inherit from the abstract class Ab-
sNtuple which defines all interfaces relevant for statistical analysis of the data these n-tuples
contain. Thus InMemoryNtuple and ArchivedNtuple are completely interchangeable for use in
various data analysis algorithms.

Arbitrary-dimensional2 persistent histograms are implemented with the HistoND tem-
plate (header file “npstat/stat/HistoND.hh”). Both uniform and non-uniform placing of bin
edges can be created using axis classes HistoAxis and NUHistoAxis, respectively, as HistoND
template parameters. The DualHistoAxis class can be employed for histograms in which only
a fraction of axes must have non-uniform bins. Two binning schemes are supported for
data sample processing. In the normal scheme, the bin count is incremented if the point
coordinates fall inside the given bin (the fill method of the class). In the centroid-preserving
scheme, all bins in the neighborhood of the sample point are incremented in such a way
that the center of mass of bin increments coincides exactly with the point location (the fillC
method)3. The objects used as histogram bin contents and the objects used as weights added
to the bins when the histogram is filled are not required to have anything in common; the
only requirement is that a meaningful binary function (typically, operator+=) can be de-
fined for them. This level of abstraction allows, for example, for using vectors and tensors as
histogram bin contents or for implementing profile histograms with the same HistoND tem-
plate. As the bin contents are implemented with the ArrayND class, all features of ArrayND
(vector space operations, slicing, interpolation, etc) are available for them as well. Overflows
are stored in separate arrays with three cells in each dimension: underflow, overflow, and
the central part covered by the regular histogram bins.

1The Geners serialization package supports several types of persistent heterogeneous n-tuples including
std::vector<std::tuple<...>>, RowPacker variadic template optimized for accessing large data samples row-
by-row, and ColumnPacker variadic template optimized for data access column-by-column.

2To be precise, the number of dimensions for both histograms and multidimensional arrays can not exceed
31 on 32-bit systems and 63 on 64-bit systems. However, your computer will probably run out of memory
long before this limitation becomes relevant for your data analysis.

3For one-dimensional histograms, this is called “linear binning” [4]. NPStat supports this technique for
uniformly binned histograms of arbitrary dimensionality.
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3 Descriptive Statistics

A number of facilities is included in the NPStat package for calculating standard descriptive
sample statistics such as mean, covariance matrix, etc. Relevant functions, classes, and
templates are described below.

3.1 Functions and Classes for Use with Point Clouds

arrayStats (header file “npstat/stat/arrayStats.hh”) — This function estimates the popula-
tion mean (µ), standard deviation (σ), skewness (s), and kurtosis (k) for a one-dimensional
set of points. A numerically sound two-pass algorithm is used. The following formulae are
implemented (N is the number of points in the sample):

µ =
1

N

N−1∑
i=0

xi (1)

σ =

√√√√ 1

N − 1

N−1∑
i=0

(xi − µ)2 (2)

s =
N

(N − 1)(N − 2)σ3

N−1∑
i=0

(xi − µ)3 (3)

g2 = N

∑N−1
i=0 (xi − µ)4(∑N−1
i=0 (xi − µ)2

)2 − 3 (4)

k =
N − 1

(N − 2)(N − 3)
((N + 1)g2 + 6) + 3 (5)

Note that the population kurtosis estimate is defined in such a way that its expectation value
for a sample drawn from the Gaussian distribution equals 3 rather than 0. For more details
on the origin of these formulae consult Ref. [5].

empiricalCdf (header file “npstat/stat/StatUtils.hh”) — This function evaluates the em-
pirical cumulative distribution function (ECDF) for a sample of points. The points must be
sorted in the increasing order by the user before the function call is made. The ECDF is
defined as follows. Suppose, the N sorted point values are {x0, x1, ..., xN−1} and all xi are
distinct (i.e., there are no ties). Then

ECDF(x) =


0 if x ≤ x0,
1
N

(
x−xi

xi+1−xi
+ i+ 1/2

)
if xi < x ≤ xi+1 and x < xN−1,

1 if x ≥ xN−1.

(6)

When all sample points are distinct, ECDF(x) is discontinuous at x = x0 and x = xN−1 and
continuous for all other x. If the sample has more than one point with the same x, let say xk
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and xk+1 where k > 0 and k < N − 2, xk also becomes a point of discontinuity. ECDF(xk)
will be set to 1

N
(k + 1/2), the value coincident with the function left limit.

empiricalQuantile (header file “npstat/stat/StatUtils.hh”) — This is the empirical quan-
tile function, EQF(y), which provides an inverse to ECDF(x). For any x from the inter-
val [x0, xN−1], EQF(ECDF(x)) = x (up to numerical round-off errors). If x < x0 then
EQF(ECDF(x)) = x0 and if x > xN−1 then EQF(ECDF(x)) = xN−1.

MultivariateSumAccumulator and MultivariateSumsqAccumulator — These classes are in-
tended for calculating means and covariance matrices for multivariate data samples in a nu-
merically stable manner. The classes can be used inside user-implemented cycles over sets of
points or with cycleOverRows and other similar methods of the AbsNtuple class. Two passes
over the data are necessary for calculating the covariance matrix, first with Multivariate-
SumAccumulator and second with MultivariateSumsqAccumulator. The multivariate mean is
initially found from

x =
1

N

N−1∑
i=0

xi (7)

and then an estimate of the population covariance matrix is calculated as

V =
1

N − 1

N−1∑
i=0

(xi − x)(xi − x)T (8)

MultivariateWeightedSumAccumulator andMultivariateWeightedSumsqAccumulator—These
classes are intended for calculating means and covariance matrices for multivariate data sam-
ples in which points enter with non-negative weights:

x =

∑N−1
i=0 wixi∑N−1
i=0 wi

, (9)

V =
Neff

Neff − 1

∑N−1
i=0 wi(xi − x)(xi − x)T∑N−1

i=0 wi

, (10)

where Neff is the effective number of entries in a weighted sample4:

Neff =

(∑N−1
i=0 wi

)2
∑N−1

i=0 w2
i

. (11)

Two passes over the data are required, first with MultivariateWeightedSumAccumulator and
then with MultivariateWeightedSumsqAccumulator.

StatAccumulator — Persistent class which determines the minimum, the maximum, the
mean, and the standard deviation of a sample of values using a single-pass algorithm. It can

4Neff is also known as the Kish’s effective sample size. Note that this estimate of V makes sense only if
the weights and point locations are statistically independent from each other. If the weights are functions of
the observed xi then there appears to be no general estimate that is independent of the weighting function.
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be used when the two-pass calculation is either impossible or impractical for some reason.
This class can be conveniently employed as a bin content type for HistoND (this turns
HistoND into a profile histogram). StatAccumulator maintains a running average which is
updated after accumulating 2K points, K = 0, 1, 2, ... The numerical precision of the standard
deviation determined in this manner is not as good as in the two-pass method but it is usually
much better than that expected from a naive implementation which simply accumulates
sample moments about 0 and then evaluates σ2 according to N

N−1
(x2−x2) (this formula can

suffer from a severe subtractive cancellation problem).
WeightedStatAccumulator — Similar class for calculating mean and standard deviation of

a sample of weighted values using a single-pass algorithm.
StatAccumulatorArr — This class provides functionality similar to an array of StatAccu-

mulator objects but with a more convenient interface for accumulating sample values (cycling
over the input values is performed by the class itself).

StatAccumulatorPair — Two StatAccumulator objects augmented by the sum of cross
terms which allows for subsequent calculation of covariance. The covariance is estimated
using a formula which can potentially suffer from subtractive cancellation5. Therefore, this
class should not be used to process large samples of points in which, for one of the variables
or for both of them, the absolute value of the mean can be much larger than the standard
deviation. This class is persistent.

CrossCovarianceAccumulator — To accumulate the sums for covariance matrix calculation
according to formula 8 in d-dimensional space, one has to keep track of d(d + 1)/2 sums of
squares and cross terms. Sometimes only a small part of the complete covariance matrix is
of interest. In this case d can often be split into subspaces of dimensionalities d1 and d2,
d = d1 + d2, so that the interesting part of covariance matrix is dimensioned d1 × d2 (plus d
diagonal terms). For large values of d, accumulating d+ d1 × d2 sums instead of d(d+ 1)/2
can mean big difference in speed and memory consumption, especially in case d1 ≪ d2 (or
d1 ≫ d2). The CrossCovarianceAccumulator allows its users to do just that: it accumulates
cross terms between two arrays with d1 and d2 elements but not the cross terms between
elements of the same array. The covariances are estimated by a single-pass method using
a formula which can suffer from subtractive cancellation5. Use with care.

SampleAccumulator — This class stores all values it gets in an internal buffer. Whenever
mean, standard deviation, or some quantile function values are needed for the accumulated
sample, they are calculated from the stored values using numerically sound techniques. Mean
and standard deviation are calculated according to Eqs. 1 and 2. Covariance and correlations
can be calculated for a pair of SampleAccumulator objects with the same number of stored
elements by corresponding methods of the class. Empirical CDF and empirical quantile
calculations are handled by calling empiricalCdf and empiricalQuantile functions internally,
preceded by data sorting. This class is persistent and can be used as the bin content template
parameter for HistoND.

WeightedSampleAccumulator — Similar to SampleAccumulator, but intended for calcu-
lating various statistics for samples of weighted points.

5This problem is partially alleviated by using long double type for internal calculations.
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Kendall’s τ and Spearman’s ρ rank correlation coefficients can be estimated by functions
sampleKendallsTau and sampleSpearmansRho, respectively. These functions are declared in
the header files “npstat/stat/kendallsTau.hh” and “npstat/stat/spearmansRho.hh”, respec-
tively.

3.2 Functions for Use with Binned Data

histoMean (header file “npstat/stat/histoStats.hh”) — This function calculates the histogram
center of mass according to Eq. 9 with bin contents used as weights for bin center coordinates.
Note that the code of this function does not enforce non-negativity of all bin values, and
the result of 9 will not necessarily make a lot of sense in case negative weights are present.
In order to check that all bins are non-negative and that there is at least one positive bin,
you can call the isDensity method of the ArrayND class on the histogram bin contents. The
histoMean function is standalone and not a member of the HistoND class because Eq. 9 is
not going to make sense for all possible bin types.

histoCovariance (header file “npstat/stat/histoStats.hh”) — This function estimates the
population covariance matrix for histogrammed data according to Eq. 10, with bin contents
used as weights for bin center coordinates. As for histoMean, results produced by histoCo-
variance will not make much sense in case negative bin values are present.

arrayCoordMean (header file “npstat/stat/arrayStats.hh”) — Similar to histoMean but the
bin values are provided in an ArrayND object and bin locations are specified by additional
arguments. Only uniform bin spacing is supported by this function (unlike histoMean which
simply gets its bin centers from the argument histogram).

arrayCoordCovariance (header file “npstat/stat/arrayStats.hh”) — Similar to histoCovari-
ance but the bin values are provided in an ArrayND object and bin locations are specified by
additional arguments. Uniform binning only.

arrayShape1D (header file “npstat/stat/arrayStats.hh”) — Estimates population mean,
standard deviation, skewness, and kurtosis for one-dimensional histogrammed data with
equidistant bins. Bin values bi used as weights are provided in an ArrayND object and bin
locations xi are specified by additional arguments. The mean and the standard deviations
squared are calculated according to Eqs. 9 and 10 reduced to one dimension. The skewness
is estimated as

s =
N2

eff

(Neff − 1)(Neff − 2)σ3

∑Nb−1
i=0 bi(xi − µ)3∑Nb−1

i=0 bi
, (12)

with Neff defined by Eq. 11. The kurtosis is found from Eq. 5 in which N is replaced by
Neff and, instead of Eq. 4, g2 is determined from

g2 =

Nb−1∑
i=0

bi

∑Nb−1
i=0 bi(xi − µ)4(∑Nb−1
i=0 bi(xi − µ)2

)2 − 3. (13)

arrayQuantiles1D (header file “npstat/stat/arrayStats.hh”) — This function treats one-
dimensional arrays as histograms and determines the values of the quantile function for
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a given set of cumulative density values (after normalizing the histogram area to 1). Each
bin is considered to have uniform probability density between its edges. If you need to
perform this type of calculation more than once with the same array, it will be more efficient
to construct a BinnedDensity1D object and then to use its quantile method instead of calling
the arrayQuantiles1D function multiple times.

arrayEntropy (header file “npstat/stat/arrayStats.hh”) — This function calculates

H = − 1

Nb

Nb−1∑
i=0

bi ln bi (14)

This formula is appropriate for arrays that tabulate probability density values on uniform
grids. To convert the result into the actual entropy of the density, multiply it by the volume
of the distribution support.

3.3 ArrayND Projections

The following set of classes works with ArrayND class and assists in making array “projec-
tions”. Projections reduce array dimensionality by calculating certain array properties over
projected indices. For example, one might want to create a one-dimensional array, a, from
a three-dimensional array, b, by summing all array elements with the given second index:
aj =

∑
i,k bijk (this means that the first and the third indices of the array are “projected”).

This and other similar operations can be performed by the project method of the ArrayND
class. What is done with the array elements when the projection is performed can be speci-
fied by the “projector” argument of the project method. In particular, this argument can be
an object which performs some statistical analysis of the projected elements.

ArrayMaxProjector (header file “npstat/stat/ArrayProjectors.hh”) — For each value of
the array indices which are not projected, finds the maximum array element for all possible
values of projected indices.

ArrayMinProjector (header file “npstat/stat/ArrayProjectors.hh”) — Finds the minimum
array element for all possible values of projected indices.

ArraySumProjector (header file “npstat/stat/ArrayProjectors.hh”) — Sums all array val-
ues in the iteration over projected indices.

ArrayMeanProjector (header file “npstat/stat/ArrayProjectors.hh”) — Calculates the mean
array value over projected indices.

ArrayMedianProjector (header file “npstat/stat/ArrayProjectors.hh”) — Calculates the
median array value over projected indices.

ArrayStdevProjector (header file “npstat/stat/ArrayProjectors.hh”) — Calculates the stan-
dard deviation of array values encountered during the iteration over projected indices.

ArrayRangeProjector (header file “npstat/stat/ArrayProjectors.hh”) — Calculates the
“range” of array values over projected indices. “Range” is defined here as the difference
between 75th and 25th percentiles of the sample values divided by the distance between 75th

and 25th percentiles of the Gaussian distribution with σ = 1. Therefore, “range” can be used
as a robust estimate of the standard deviation.
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All “projectors” are derived either from AbsArrayProjector class in case the calculated
quantity depends on the array indices (header file “npstat/nm/AbsArrayProjector.hh”) or
from AbsVisitor class in case it is sufficient to know just the element values (header file
“npstat/nm/AbsVisitor.hh”). Naturally, the user can supply his/her own projector imple-
mentations derived from these base classes for use with the the projectmethod of the ArrayND
class.

4 Statistical Distributions

A number of univariate and multivariate statistical distributions is supported by the NP-
Stat package. All implementations of univariate continuous distributions share a common
interface and can be used interchangeably in a variety of statistical algorithms. A similar
approach has been adopted for univariate discrete and multivariate continuous distributions.

4.1 Univariate Continuous Distributions

All classes which represent univariate continuous distributions inherit from the AbsDistri-
bution1D abstract base class. These classes must implement methods density (probability
density function), cdf (cumulative distribution function), exceedance (exceedance probabil-
ity is just 1 − cdf, but direct application of this formula is often unacceptable in numerical
calculations due to subtractive cancellation), and quantile (the quantile function, inverse of
cdf). For a large number of statistical distributions, the probability density function looks
like 1

σ
p
(
x−µ
σ

)
, where µ and σ are the distribution location and scale parameters, respectively.

Distributions of this kind should inherit from the base class AbsScalableDistribution1D which
handles proper scaling and shifting of the argument (this base class itself inherits from AbsDis-
tribution1D, and it is declared in the same header file “npstat/stat/AbsDistribution1D.hh”).

Some of the standard univariate continuous distributions implemented in NPStat are
listed in Table 1. A few special distributions less frequently encountered in the statistical
literature are described in more detail in the following subsections. Of course, user-developed
classes inheriting from AbsDistribution1D or AbsScalableDistribution1D can also be employed
with all NPStat functions and classes that take an instance of AbsDistribution1D as one of
parameters.
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Table 1: Continuous univariate distributions included in NPStat. Pn(x) are
the Legendre polynomials. Parameters µ and σ are not shown for scalable
distributions. When not given explicitly, the normalization constantN ensures
that

∫∞
−∞ p(x)dx = 1. Most of the classes listed in this table are declared in

the header file “npstat/stat/Distributions1D.hh”. If the distribution is not
declared in that header then it has a dedicated header with the same name,
e.g., “npstat/stat/TruncatedDistribution1D.hh” for TruncatedDistribution1D.

Class Name p(x) Scalable?

Uniform1D I(0 ≤ x ≤ 1) yes
IsoscelesTriangle1D (1− |x|)I(−1 ≤ x ≤ 1) yes
Exponential1D e−xI(x ≥ 0) yes
Quadratic1D (1 + aP1(2x− 1) + bP2(2x− 1)) I(0 ≤ x ≤ 1) yes

LogQuadratic1D N exp(aP1(2x− 1) + bP2(2x− 1)) I(0 ≤ x ≤ 1) yes

Gauss1D 1√
2π
e−x2/2 yes

GaussianMixture1D 1√
2π

∑
i
wi

σi
e−(x−µi)

2/(2σ2
i ), where

∑
i wi = 1 yes

TruncatedGauss1D N√
2π
e−x2/2 I(−nσ ≤ x ≤ nσ) yes

MirroredGauss1D

I(0 ≤ x ≤ 1)
1√
2πs

∞∑
i=−∞

[
e−(x−m+2 i)2/(2s2)+

e−(x+m+2 i)2/(2s2)
]
,

where 0 ≤ m ≤ 1 and s > 0

yes

BifurcatedGauss1D

N
[
e−x2/(2α)I(−nσ,L ≤ x < 0)+

e−x2/(2(1−α))I(0 ≤ x < nσ,R)
] yes

UGaussConvolution1D 1√
2π(b−a)

e−x2/2 ∗ I(a ≤ x ≤ b) yes

SymmetricBeta1D N (1− x2)p I(−1 < x < 1) yes
Beta1D N xα−1(1− x)β−1 I(0 < x < 1) yes

Gamma1D N xα−1e−x I(x > 0) yes
Pareto1D αx−α−1I(x ≥ 1) yes

Huber1D N [e−x2/2I(|x| ≤ a) + e a(a/2−|x|)(1− I(|x| ≤ a))] yes
Cauchy1D π−1(1 + x2)−1 yes

StudentsT1D N (1 + x2/Ndof )
−(Ndof+1)/2 yes

Moyal1D 1√
2π
e−(x+e−x)/2 yes

Logistic1D e−x (1 + e−x)−2 yes
Continued on the next page

11



Table 1 — continued from the previous page
Class Name p(x) Scalable?

Tabulated1D

Defined by a table of equidistant values on the
[0, 1] interval, interpolated by a polynomial (up
to cubic). The first table point is at x = 0 and
the last is at x = 1.

yes

BinnedDensity1D

Defined by a table ofN equidistant values on the
[0, 1] interval, with optional linear interpolation.
The first table point is at x = 1/(2N) and the
last is at x = 1− 1/(2N). Useful for converting
1-d histograms into distributions.

yes

QuantileTable1D

Defined by a table of N equidistant quantile
function values on the [0, 1] interval with linear
interpolation between these values (so that den-
sity looks like a histogram with equal area bins).
The first table point is at x = 1/(2N) and the
last is at x = 1 − 1/(2N). Useful for convert-
ing data samples into distributions by sampling
empirical quantiles.

yes

DistributionMix1D
∑

i wipi(x), where
∑

i wi = 1 no
DeltaMixture1D

∑
i wiδ(x− xi), where

∑
i wi = 1 yes

LocationScaleFamily1D
1
s
p other

(
x−m
s

)
, useful for converting non-scalable

1-d distributions into scalable.
yes

RatioOfNormals
Ratio of two correlated normal random vari-
ables, as described in [6].

no

LeftCensoredDistribution f p other(x) + (1− f) δ(x− x−∞) no
RightCensoredDistribution f p other(x) + (1− f) δ(x− x+∞) no
TruncatedDistribution1D N p other(x) I(xmin ≤ x ≤ xmax) no

TransformedDistribution1D p other(y)
∣∣ dy
dx

∣∣ for monotonous y(x) no

4.2 Johnson Curves

The density functions of the Johnson distributions [7, 8, 9] are defined as follows:

SU (unbounded) : p(x) =
δ

λ

√
2π
(
1 +

(
x−ξ
λ

)2) e−
1
2(γ+δ sinh−1(x−ξ

λ ))
2

(15)

SB (bounded) : p(x) =
δ

λ
√
2π
(
x−ξ
λ

) (
1− x−ξ

λ

) e− 1
2(γ+δ log( x−ξ

ξ+λ−x))
2

I(ξ < x < ξ + λ) (16)

They are related to the normal distribution, N(µ, σ), by simple variable transformations.
Variable z distributed according to N(0, 1) can be obtained from Johnson’s variates x by
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Figure 1: Black: s = 0, k = 3, Gaussian. Red: s = −1.5, k = 10, SU . Blue:
s = 0.5, k = 2, SB. For all three curves, the mean is 0 and the standard
deviation is 1.

transformation z = γ + δf
(
x−ξ
λ

)
:

f(y) = sinh−1(y) SU curves

f(y) = log
(

y
1−y

)
(0 < y < 1) SB curves

Both densities become arbitrarily close to the lognormal density (for which variable z =
γ + δ log(x− ξ) is normally distributed) in the limit γ → ∞ and to the normal distribution
in the limit δ → ∞ (ξ and λ have to be adjusted accordingly). Johnson’s parameterization
of the lognormal density is

p(x) =
δ√

2π(x− ξ)
e−

1
2
(γ+δ log(x−ξ))2I(x > ξ) (17)

Together with their limiting cases, Johnson’s SU and SB distributions attain all possible
values of skewness and kurtosis. Unfortunately, parameters ξ, λ, γ, and δ of SU and SB in
Eqs. 15 and 16 have no direct relation to each other. Crossing the lognormal boundary
requires a discontinuous change in the parameter values which is rather inconvenient for
practical data fitting purposes. This problem can be alleviated by reparameterizing the
functions in terms of mean µ, standard deviation σ, skewness s, and kurtosis k, so that the
corresponding curve type and the original parameters ξ, λ, γ, δ are determined numerically.
Examples of Johnson’s density functions are shown in Fig 1.

Johnson’s SU and SB curves are implemented in NPStat with classes JohnsonSu and
JohnsonSb, respectively (header file “npstat/stat/JohnsonCurves.hh”). Both of these dis-
tributions are parameterized by µ, σ, s, and k, with an automatic internal conversion into
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ξ, λ, γ, δ. An original algorithm was developed to perform this conversion, based in part on
ideas from Refs. [10, 11]. The lognormal distribution parameterized by µ, σ, and s is imple-
mented by the LogNormal class (header file “npstat/stat/Distributions1D.hh”). The class
JohnsonSystem (header file “npstat/stat/JohnsonCurves.hh”) can be used when automatic
switching between SU , SB, lognormal, and Gaussian distributions is desired.

4.3 Composite Distributions

Composite distributions are built out of two or more component distributions. One of these
component distributions is arbitrary while all others must have a density supported on the
interval [0, 1]. Suppose, Gk(x), k = 1, 2, 3, ... are cumulative distribution functions with
corresponding densities gi(x) proportional to I(0 ≤ x ≤ 1). Then, if H(x) is a cumulative
distribution function with density h(x), F1(x) = G1(H(x)) is also a cumulative distribution
function with density f1(x) = h(x) g1(H(x)). Similarly, F2(x) = G2(F1(x)) is a cumulative
distribution with density f2(x) = f1(x)g2(F1(x)) = h(x) g1(H(x))g2(G1(H(x))). We can now
construct F3(x) = G3(F2(x)) and so on. This sequence can be terminated after an arbitrary
number of steps.

Note that f1(x) = h(x) in case g1(x) is a uniform probability density. Small deviations
from uniformity in g1(x) will lead to corresponding small changes in f1(x). The resulting
density model can be quite flexible, even if the component distributions H(x) and G1(x) are
simple. Therefore, data samples with complicated sets of features can be modeled as follows:
construct an approximate model h(x) first, even if it does not fit the sample quite right. Then
transform the data points xi to the [0, 1] interval according to yi = H(xi). The density of
points yi

6 can now be fitted to another parametric distribution (including composite one) or
it can be modeled by nonparametric techniques [14]. Due to the elimination of the boundary
bias, the LOrPE density estimation method described in Section 6.2 becomes especially
useful in the latter approach. Once the appropriate G(y) is constructed (parametrically or
not), the resulting composite density will provide a good fit to the original set of points xi

7.
The composite distributions are implemented in NPStat with the CompositeDistribution1D

class. One composite distribution can be used to construct another, thus allowing for com-
position chains of arbitrary length, as described at the beginning of this subsection. Several
pre-built distributions of this type are included in the NPStat package (they are declared in
the header file “npstat/stat/CompositeDistros1D.hh”). Flexible models potentially capable
of fitting wide varieties of univariate data samples are implemented by the JohnsonLadder and

6This density is called “relative density” [12] or “comparison density” [13] in the statistical literature.
Note that h(x) should be selected in such a way that the ratio between the unknown population density of
the sample under study and h(x) should be bounded for all x. If it is not, the relative density will usually be
unbounded, and its subsequent representation by polynomials or log-polynomials will not lead to a consistent
estimate. Johnson curves often work reasonably well as h(x).

7There is, of course, a close connection between this density modeling approach and a number of goodness-
of-fit techniques based on the comparison of the empirical cdf with the cdf of the fitted density. For example,
using Legendre polynomials to model log(g1(x)), as in the LogQuadratic1D density, directly improves the
test criterion used in the Neyman’s smooth test for goodness-of-fit [13, 15].
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BinnedCompositeJohnson classes. In both of these, Johnson curves are used as H(x). John-
sonLadder takes an arbitrarily long sequence of parametric LogQuadratic1D distributions for
Gk(x) while BinnedCompositeJohnson is using a single nonparametric BinnedDensity1D as
G1(x).

4.4 Univariate Discrete Distributions

Classes which represent univariate discrete distributions inherit from the AbsDiscreteDistri-
bution1D abstract base class. The interface defined by this base class differs in a number
of ways from the AbsDistribution1D interface. Instead of the method density used with ar-
guments of type “double”, discrete distributions have the method probability defined for the
arguments of type “long int”. The methods cdf and exceedance have the same signatures
as corresponding methods of continuous distributions, but the quantile function is returning
long integers. The method random generates long integers as well.

Discrete univariate distributions which can be trivially shifted should inherit from the
ShiftableDiscreteDistribution1D base class which handles the shift operation. There is, how-
ever, no operation analogous to scaling of continuous distributions.

Univariate discrete distributions implemented in NPStat are listed in Table 2. Mixtures

Table 2: Discrete univariate distributions included in NPStat. The location pa-
rameter is not shown explicitly for shiftable distributions. Classes listed in this
table are declared in the header file “npstat/stat/DiscreteDistributions1D.hh”.

Class Name p(n) Shiftable?

DiscreteTabulated1D Defined by a table of probability values. Nor-
malization is computed automatically.

yes

Poisson1D λn

n!
e−λ no

of discrete univariate distributions with finite support can be implemented using the function
pooledDiscreteTabulated1D (header file “npstat/stat/DiscreteDistributions1D.hh”).

4.5 Multivariate Continuous Distributions

All classes which represent multivariate continuous distributions inherit from the AbsDistri-
butionND abstract base class. These classes must implement methods density (probability
density function) and unitMap (mapping from the unit d-dimensional cube, Ud, into the
density support region). Densities that can be shifted and scaled in each coordinate sepa-
rately should be derived from the AbsScalableDistributionND base class (which itself inher-
its from AbsDistributionND). Classes representing densities that look like p(x) =

∏
q(xi),

where q(x) is some one-dimensional density, should be derived from the HomogeneousPro-
ductDistroND base class (the three base classes just mentioned are declared in the “np-
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stat/stat/AbsDistributionND.hh” header file). Simple classes inheriting from AbsDistribu-
tionND are listed in Table 3.

Table 3: Continuous multivariate distributions included in NPStat. These
distributions are predominantly intended for use as multivariate density esti-
mation kernels. Shifts and scale factors are not shown for scalable distributions.
Here, “scalability” means the ability to adjust the shift and scale parameters
in each dimension, not the complete bandwidth matrix. When not given ex-
plicitly, the normalization constant N ensures that

∫
p(x)dx = 1. All of these

distributions are declared in the header file “npstat/stat/DistributionsND.hh”
with exception of ScalableGaussND which has its own header.

Class Name p(x) Scalable?

ProductDistributionND
∏d

i=1 pi(xi)
depends on
components

UniformND
∏d

i=1 I(0 ≤ xi ≤ 1) yes

ScalableGaussND (2π)−d/2e−|x|2/2 yes

ProductSymmetricBetaND N
∏d

i=1(1− x2
i )

pI(−1 < xi < 1) yes
ScalableSymmetricBetaND N (1− |x|2)pI(|x| < 1) yes

ScalableHuberND N [e−|x|2/2I(|x| ≤ a) + e a(a/2−|x|)(1− I(|x| ≤ a))] yes

RadialProfileND

Arbitrary centrally-symmetric density. Defined
by its radial profile: a table of equidistant values
on the [0, 1] interval, interpolated by a polyno-
mial (up to cubic). The first table point is at
|x| = 0 and the last is at |x| = 1. For |x| > 1
the density is 0. Normalization is computed au-
tomatically.

yes

BinnedDensityND

Defined by a table of values on Ud, equidistant
in each dimension, with optional multilinear in-
terpolation. In each dimension, the first table
point is at xi = 1/(2Ni) and the last is at
xi = 1 − 1/(2Ni). Useful for converting mul-
tivariate histograms into distributions.

yes

4.6 Copulas

For any continuous multivariate density p(x|a) in a d-dimensional space X of random vari-
ables x ∈ X depending on a vector of parameters a, we define d marginal densities pi(xi|a),
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i = 1, . . . , d by

pi(xi|a) ≡
∫

p(x1, . . . , xd|a)
d∏

j=1

j ̸=i

dxj

with their corresponding cumulative distribution functions

Fi(xi|a) ≡
∫ xi

−∞
pi(τ |a)dτ.

For each point x ∈ X, there is a corresponding point y in a unit d-dimensional cube Ud such
that yi(xi) ≡ Fi(xi|a), i = 1, . . . , d. The copula density is defined on Ud by

c(y(x)|a) ≡ p(x|a)∏d
i=1 pi(xi|a)

. (18)

Copula density (as well as its corresponding multivariate distribution function C(y|a), or
just copula) contains all information about mutual dependence of individual variables xi. It
can be shown that all copula marginals are uniform and, conversely, that any distribution
on Ud whose marginals are uniform is a copula [16].

Naturally, when the copula and the marginals of some multivariate density are known,
the density itself is expressed by

p(x|a) = c(y(x)|a)
d∏

i=1

pi(xi|a). (19)

Note that c(y|a) = 1 for all y if and only if all xi are independent and the density p(x|a) is
fully factorizable.

The NPStat package allows its users to model multivariate continuous distributions us-
ing copula and marginals with the aid of CompositeDistributionND class. An object of this
class is normally constructed out of user-provided copula and marginals. CompositeDistri-
butionND object can also be constructed from histogram bins. Several standard copulas are
implemented: Gaussian, Student’s-t, and Farlie-Gumbel-Morgenstern [16]. The correspond-
ing class names are GaussianCopula, TCopula, and FGMCopula (these classes are declared in
the header file “npstat/stat/Copulas.hh”).

Empirical multivariate copulas densities can be constructed as follows. Let’s assume that
there are no coincident point coordinates in each dataset variable. We can sort all N elements
of the data set in the increasing order in each coordinate separately and assign to each data
point i a multi-index {mi0, ...,mid}. For each dimension k, mik represents the number of the
point i in the sequence ordered by the dimension k coordinate, so that 0 ≤ mik < N . The
empirical copula density, ECD(x), is then defined by

ECD(x) =
N−1∑
i=0

d−1∏
k=0

δ

(
xk −

mik + 1/2

N

)
, (20)
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where δ(x) is the Dirac delta function. To get a better idea about locations of these delta
functions, think of an N ×N × ...×N uniform grid in d dimensions on which N points are
placed in such a way that no two points share the same coordinate in any of the dimensions.
In two dimensions, this is like the placement of chess pieces in the eight queens puzzle [17]
which is simplified to use rooks instead of queens [18].

In the NPStat package, empirical copula densities can be approximated by histograms
defined on Ud. Construction of empirical copula histograms can be performed by functions
empiricalCopulaHisto (header file “npstat/stat/empiricalCopulaHisto.hh”) and empiricalCop-
ulaDensity (header file “npstat/stat/empiricalCopula.hh”). The integrated empirical copulas
can be constructed on uniform grids by the calculateEmpiricalCopula function (header “np-
stat/stat/empiricalCopula.hh”).

The Spearman’s rank correlation coefficient, ρ, can be estimated from two-dimensional
empirical copulas using functions spearmansRhoFromCopula and spearmansRhoFromCopu-
laDensity declared in the header file “npstat/stat/spearmansRho.hh”. These functions eval-
uate the following integrals numerically:

ρ = 12

∫ 1

0

∫ 1

0

C(y|a)dy0dy1 − 3 used by spearmansRhoFromCopula (21)

ρ = 12

∫ 1

0

∫ 1

0

c(y|a)y0y1dy0dy1 − 3 used by spearmansRhoFromCopulaDensity (22)

While these two formulas are identical mathematically [16], the approximations used in
numerical integration and differentiation will usually lead to slightly different results returned
by these functions for some copula and its corresponding density.

The Kendall’s rank correlation coefficient, τ , can be estimated from the empirical copulas
using the function kendallsTauFromCopula declared in the header “npstat/stat/kendallsTau.hh”.
This function evaluates the following formula numerically:

τ = 4

∫ 1

0

∫ 1

0

C(y|a)c(y|a)dy0dy1 − 1. (23)

The mutual information between variables can be estimated from copula densities repre-
sented on uniform grids according to Eq. 148.

Decomposition of multivariate densities into the marginals and the copula is useful not
only for a subsequent analysis of mutual dependencies of the variates but also for imple-
menting nonparametric density interpolation, as described in the next section.

5 Nonparametric Interpolation of Densities

There are numerous problems in High Energy Physics in which construction of some proba-
bility density requires extensive simulations and, due to the CPU time limitations, can only

8Mutual information is simply the negative of the copula entropy [19].
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be performed for a limited number of parameter settings. This is typical, for example, for
“mass templates” which depend on such parameters as the pole mass of the particle under
study, sample background fraction, detector jet energy scale, etc. It is often desirable to have
the capability to evaluate such a density for arbitrary parameter values. It is sometimes pos-
sible to address this problem by postulating an explicit parametric model and fitting that
model to the sets of simulated distributions. However, complex dependence of the distribu-
tion shapes on the parameter values often leads to infeasibility of this approach. Then it
becomes necessary to interpolate the densities without postulating a concrete model.

5.1 Interpolation of Univariate Densities using Quantile Functions

As it was shown in [20], a general interpolation of one-dimensional distributions which leads
to very naturally looking results can be achieved by interpolating the quantile function (de-
fined as the inverse of the cumulative distribution function). While study [20] considers linear
interpolation in one-dimensional parameter space, it is obvious that similar weighted average
interpolation can be easily constructed in multivariate parameter settings and with higher
order interpolation schemes. In general, the interpolated quantile function for an arbitrary
parameter value a is expressed by

q(y|a) =
m∑
j=1

wjq(y|aj), (24)

where the weighted quantile functions are summed at the m “nearby” parameter settings
aj for which the distribution was explicitly constructed. The weights wj are normalized by∑m

j=1 wj = 1. Their precise values depend on the location of a w.r.t. nearby aj and on the
interpolation scheme used. Simple high-order interpolation schemes can be constructed in
one-dimensional parameter space by using Lagrange interpolating polynomials to determine
the weights9. In r-dimensional parameter space, rectangular grids can be utilized with
multilinear or multicubic interpolation. For example, in the case of multilinear interpolation,
the weights can be calculated as follows:

— Find the hyperrectangular parameter grid cell inside which the value of a falls.

— Shift and scale this cell so that it becomes a hypercube with diagonal vertices at
(0, 0, ..., 0) and (1, 1, ..., 1).

— Let’s designate the shifted and scaled value of a by z, with components (z1, z2, ..., zr).
If we were to interpolate towards z a scalar function f defined at the vertices with
coordinates (c1, c2, . . . , cr), where all ck values are now either 0 or 1, then we would use

9To determine interpolated value of a function using Lagrange interpolating polynomials, weights are
assigned to function values at a set of nearby points according to a rule published by Lagrange in 1795. The
weights depend only on the abscissae of the interpolated points and on the coordinate at which the function
value is evaluated but not on the interpolated function values.
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the formula

f(z1, z2, ..., zr) =
∑

c1∈{0,1}
c2∈{0,1}
·········

cr∈{0,1}

f(c1, c2, ..., cr)
r∏

k=1

zckk (1− zk)
1−ck (25)

which is obviously linear in every zk and has correct function values when evaluated
at the vertices. In complete analogy, we define the weights for the quantile functions
constructed at the vertices with coordinates (c1, c2, . . . , cr) to be w(c1, c2, . . . , cr) =∏r

k=1 z
ck
k (1− zk)

1−ck . Naturally, there are m = 2r weights total.

The quantile interpolation of univariate distributions is implemented in the NPStat package
with the InterpolatedDistribution1D class. A collection of quantile functions is assembled
incrementally together with their weights (formula for calculating the weights has to be
supplied by the user). For calculating the interpolated density at point x, the equation
x = q(y|a), with q(y|a) from 24, is solved numerically for y. The density is then evaluated

by numerically differentiating the interpolated quantile function: p(x|a) =
(

∂q(y|a)
∂y

)−1

.

Direct interpolation of univariate density functions, also known as “vertical interpola-
tion”, is implemented by the VerticallyInterpolatedDistribution1D class.

A class with a simpler interface implementing automatic linear weight assignments be-
tween nearby points in a 1-d parameter space is called InterpolatedDistro1D1P. This class can
be used to interpolate either quantile functions or densities, depending on a switch. A simi-
lar class which interpolates univariate densities on a rectangular grid in a miltidimensional
parameter space is called InterpolatedDistro1DNP.

5.2 Interpolation of Multivariate Densities

The procedure described in the previous section can be generalized to interpolate multivariate
distributions. Let p(x|a) be a multivariate probability density in a d-dimensional space X of
random variables x ∈ X. a is a vector of parameters, and

∫
X
p(x|a)dx = 1 for every a10. For

a “well-behaved” density (Riemann-integrable, etc), it is always possible to construct a one-
to-one mapping from the space X into the unit d-dimensional cube, Ud, using a sequence of
one-dimensional conditional cumulative distribution functions. These functions are defined
as follows:

F1(x1|x2, x3, . . . , xd, a) ≡
∫ x1

−∞ p(z1, x2, x3, . . . , xd|a)dz1/
∫∞
−∞ p(z1, x2, x3, . . . , xd|a)dz1

F2(x2|x3, . . . , xd, a) ≡
∫ x2

−∞ F1(∞|z2, x3, . . . , xd, a)dz2/
∫∞
−∞ F1(∞|z2, x3, . . . , xd, a)dz2

F3(x3| . . . , xd, a) ≡
∫ x3

−∞ F2(∞|z3, . . . , xd, a)dz3/
∫∞
−∞ F2(∞|z3, . . . , xd, a)dz3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fd(xd|a) ≡

∫ xd

−∞ Fd−1(∞|zd, a)dzd/
∫∞
−∞ Fd−1(∞|zd, a)dzd

10Compared to interpolation of arbitrary functions, preserving this normalization is one of the major
complications in interpolating multivariate densities.
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Naturally, Fk(∞|xk+1, . . . , xd, a) is just renormalized p(x|a) in which the first k components
of x are integrated out (i.e., marginalized). The mapping from x ∈ X into y ∈ Ud is defined
by yi = Fi(xi| . . .), i = 1, . . . , d. In terms of conditional cumulative distribution functions,

p(x|a) =
d∏

i=1

∂Fi(xi| . . .)
∂xi

.

This method is not unique and other mappings from X to Ud are possible. What makes
this particular construction useful is that the inverse mapping, from Ud into X, can be easily
constructed as well: we simply solve the equations

yi = Fi(xi| . . .) (26)

in the reverse order, starting from dimension d and going back to dimension 1. Each equation
in this sequence has only one unknown and therefore it can be efficiently solved numerically
(and sometimes algebraically) by a variety of standard root finding techniques. The solutions
of these equations, xi = qi(yi|xi+1, . . . , xd, a) ≡ F−1

i (yi| . . .), are the conditional quantile
functions (CQFs). Note that

p(x|a) =

(
d∏
i=1

∂qi(yi| . . .)
∂yi

)−1

. (27)

Now, if the CQFs are known for some parameter values a1 and a2, interpolation to-
wards a = (1 − λ)a1 + λa2 is made in the same manner as described in Section 5.1:
xi = (1− λ)qi(yi|xi+1, . . . , xd, a1) + λqi(yi|xi+1, . . . , xd, a2). If the CQFs are known on a grid
in the parameter space, we have to use an appropriate interpolation technique (multilinear,
multicubic, etc) in that space in order to assign the weights to the CQFs at the nearby grid
points. In general, the interpolated CQFs are defined by a weighted average

qi(yi|xi+1, . . . , xd, a) =
m∑
j=1

wjqi(yi|xi+1, . . . , xd, aj), (28)

where the sum is performed over m nearby parameter points, weights wj are normalized
by
∑m

j=1wj = 1, and their exact values depend on the parameter grid chosen and the
interpolation method used.

Basically, it is the whole mapping from y into x which gets interpolated in this method.
The CQF interpolation results look very natural, but the process is rather CPU-intensive:
for each x we need to solve d one-dimensional nonlinear equations

xi = qi(yi|xi+1, . . . , xd, a), i = d, . . . , 1 (29)

in order to determine y of the interpolated mapping. In this process, each call to evaluate
qi(yi|xi+1, . . . , xd, a) triggers m calls to evaluate qi(yi|xi+1, . . . , xd, aj). Depending on imple-
mentation details, each of these m calls may in turn trigger root finding in an equation
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like 26. Once y is found for the interpolated CQFs, density is determined by numerical
evaluation of 27 in which qi(yi| . . .) are given by 28.

In practice, finite steps of the parameter grids will cause dependence of the interpolation
results on the order in which conditional quantiles are evaluated. If choosing some particu-
lar order is considered undesirable and increased CPU loads are acceptable, all d! possible
permutations should be averaged.

In the NPStat package, multivariate densities whose mapping from the multidimensional
unit cube into the density support region is implemented via CQFs return “true” when their
virtual function mappedByQuantiles is called. User-developed implementations of multivari-
ate densities should follow this convention as well. In particular, mapping of the densities
represented by the BinnedDensityND class (lookup tables on hyperrectangular grids with
multilinear interpolation) is performed by CQFs, as well as mapping of all fully factorizable
densities.

When the fidelity of the model is less critical or when the correlation structure of the
distribution is more stable w.r.t. parameter changes than its location and scales, much
faster multivariate density interpolation can be performed by decomposing the density into
the copula and the marginals. The support of the copula density c(y(x)|a) defined in Eq. 18
is always Ud and it does not depend on the parameter a. This suggests that the marginals
and the copula can be interpolated separately, using quantile function interpolation for the
marginals and the standard weighted average interpolation for the copula.

The NPStat package uses the same data structure to perform both CQF-based and
copula-based interpolation of multivariate densities. Multilinear interpolation is supported
on a rectangular parameter grid (not necessarily equidistant). The distributions at the
grid points are collected together using the GridInterpolatedDistribution class. Internally, the
interpolation is performed by either UnitMapInterpolationND or CopulaInterpolationND class,
depending on a switch. These classes perform CQF-based and copula-based interpolation,
respectively.

6 Nonparametric Density Estimation

The problem of estimating population probability density function from a finite sample
drawn from this population is ubiquitous in data analysis practice. It is often the case
that there are no substantial reasons for choosing a particular parametric density model
but certain assumptions, such as continuity of the density together with some number of
derivatives or absence of narrow spatial features, can still be justified. There is a number of
approaches by which assumptions of this kind can be introduced into the statistical model.
These approaches are collectively known as “nonparametric density estimation” methods [21,
22, 23]. The NPStat package provides an efficient implementation of one of such methods,
kernel density estimation (KDE), together with its extension to polynomial density models
and densities with bounded support. This extension is called “local orthogonal polynomial
expansion” (LOrPE).
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6.1 Kernel Density Estimation (KDE)

Suppose, we have an i.i.d. sample of measurements xi, i = 0, 1, ..., N − 1 from a univariate
probability density p(x). The empirical probability density function (EPDF) for this sample
is defined by

EPDF(x) =
1

N

N−1∑
i=0

δ(x− xi), (30)

where δ(x) is the Dirac delta function. EPDF(x) can itself be considered an estimate of p(x).
However, this estimate can be substantially improved if some additional information about
p(x) is available. For example, we can often assume that p(x) is continuous together with
its first few derivatives or that it can have at most a few modes. In such cases a convolution
of EPDF(x) with a kernel function, K(x), often provides a much better estimate of the
population density. K(x) itself is usually chosen to be a symmetric continuous density with
a location and scale parameter, so that the resulting estimate looks like

p̂KDE(x|h) =
1

Nh

N−1∑
i=0

K

(
x− xi

h

)
. (31)

In the context of density estimation, parameter h is usually referred to as “bandwidth”. Use
of the Gaussian distribution or one of the distributions from the symmetric beta family as
K(x) is very common. In fact, it is so common that beta family kernels have their own
names in the density estimation literature. These names are listed in Table 4.

Table 4: One-dimensional kernels from the symmetric beta family. All these
kernels look like N (1 − x2)p I(−1 < x < 1), where N is the appropriate
normalization factor. In the NPStat package, their formulae are implemented
by the SymmetricBeta1D function.

Kernel name Power p

Uniform (also called “boxcar”) 0
Epanechnikov 1

Biweight (also called “quartic”) 2
Triweight 3

Quadweight 4

In the limit N → ∞ and with proper choice of h so that h → 0 and Nh → ∞, p̂KDE(x)
becomes a consistent estimate of p(x) in terms of integrated squared error (ISE):

ISE(h) =

∫ ∞

−∞
(p̂KDE(x|h)− p(x))2dx, lim

N→∞
ISE(h) = 0. (32)
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For the method analysis purposes, it is useful to understand what happens when we
reconstruct known densities p(x). Here, another measure of distance between the true density
and its estimator becomes indispensable, called “mean integrated squared error” (MISE):

MISE(h) = E(ISE(h)) = E

(∫ ∞

−∞
(p̂KDE(x|h)− p(x))2dx

)
, (33)

where E(...) stands for the expectation value over samples of N points drawn from p(x).
While other distance measures can be defined (and may be more relevant for your problem),
MISE(h) is usually the easiest to analyze mathematically11. A typical goal of such an analysis
consists in finding the value of h which minimizes MISE(h) for a sample of given size, and
a significant amount of effort has been devoted to such bandwidth optimization studies (see,
e.g., Refs. [24, 25] for a review). A large fraction of these studies employs a simple MISE
approximation valid for large values of N known as “AMISE” (asymptotic MISE). This
approximation includes just the two leading terms known as “bias” which increases with
increasing bandwidth and “variance” which decreases with increasing bandwidth, so that
the bandwidth optimization procedure is reduced to finding the best bias-variance trade-off.

For subsequent discussion, it will be useful to introduce the concept of kernel order. Let’s
define the functional

µj(f) =

∫ ∞

−∞
xjf(x)dx (34)

which is the j-th moment of f(x) about 0. Then it is said that the kernel K(x) is of order
m if

µ0(K) = 1, µj(K) = 0 for j = 1, ...,m− 1, and µm(K) ̸= 0. (35)

It can be shown that, for one-dimensional KDE, the rate of AMISE convergence to 0 is

proportional to N− 2m
2m+1 (see, for example, section 2.8 of [26]). Therefore, kernels with high

values of m should be preferred for large samples. At the same time, only in case m = 2 the
kernels can be everywhere non-negative (i.e., bona fide densities). When m > 2 (so called
“high-order” kernels), in order to have µ2(K) = 0, K(x) must become negative somewhere.
Therefore, negative values of p̂KDE(x|h) also become possible, and a mechanism for dealing
with this problem must be specified. In NPStat, this problem is normally taken care of by
setting negative values of p̂KDE(x|h) to 0 with subsequent renormalization of the density
estimate so that its integral is 1.

It is instructive to consider p(x), EPDF(x), and p̂KDE(x|h) in the frequency domain12.
There, the Fourier transform of K(x) acts as a low-pass filter which suppresses the sampling
noise present in EPDF(x) so that the result, p̂KDE(x|h), has a better match to the spectrum
of p(x). By Parseval’s identity, this leads to the reduction of the ISE. High-order kernels
allow for a sharper frequency cutoff in the filter. Fortunately, the precise shape of p(x)
frequency spectrum is relatively unimportant, it is only important that its high frequency

11Note that both ISE and MISE are not dimensionless and, therefore, not invariant under scaling trans-
formations. It is OK to compare different p̂KDE(x|h) with each other if the underlying p(x) is the same, but
ISE or MISE comparison for different p(x) requires certain care if meaningful results are to be obtained.

12The Fourier transform of a probability density is called “characteristic function” of the distribution.
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components decay “fast enough” so that their suppression together with the noise does not
cause a significant distortion of p̂KDE(x|h) in comparison with p(x). Powerful automatic
bandwidth selection rules can be derived from this type of analysis if certain assumptions
about the p(x) spectrum decay rate at high frequencies are satisfied [27, 28].

With a few modifications, the ideas described above can be translated to multivariate
settings. The kernel function becomes a multivariate density, and the bandwidth parameter
becomes, in general, the bandwidth matrix (for example, the covariance matrix in the case
of multivariate Gaussian kernel).

The NPStat package calculates p̂KDE(x|h) on an equidistant grid in one or more dimen-
sions. Initially, the data sample is histogrammed using a finely binned histogram and then
convoluted with a kernel using Discrete Fast Fourier Transform (DFFT). The number of
histogram bins, Nb, should be selected taking into account the following considerations:

— The bins should be sufficiently small so that no “interesting” detail will be missed due
to discretization of the density.

— The bins should be sufficiently small so that the expected optimal MISE is signifi-
cantly larger than the ISE due to density discretization. Detailed exposition of this
requirement can be found in Ref. [29].

— DFFT should be efficient for this number of bins. It is best to use Nb = 2k bins in
each dimension, where k is a positive integer.

The computational complexity of this method is O(N) +O(Nb lnNb) which is usually much
better than the O(N × Nb) complexity of a “naive” KDE implementation. However, for
large sample dimensionalities Nb can become very large which limits the applicability of this
technique. There are other computational methods (not yet in NPStat) which can work
efficiently for high-dimensional samples [30, 31].

The following NPStat functions and classes can be used to perform KDE and to assist
in bandwidth selection:

amiseOptimalBwGauss (header file “npstat/stat/amiseOptimalBandwidth.hh”) — calcu-
lates AMISE-optimal bandwidth for fixed-bandwidth KDE with Gaussian kernel as well as
high-order kernels derived from Gaussian. The following formula is implemented:

hAMISE =

(
R(K)(m!)2

2mµ2
m(K)R(p(m))N

) 1
2m+1

. (36)

In this formula, R(f) denotes the functional R(f) =
∫∞
−∞ f 2(x)dx defined for any square-

integrable function f , µm(f) is the functional defined in Eq. 34, K is the kernel, m is the
kernel order, p(m) is the m-th derivative of the reconstructed density13, and N is the number
of points in the sample. The expected AMISE corresponding to this bandwidth is calculated
from

AMISE(hAMISE) =
(2m+ 1)R(K)

2mhAMISE N
. (37)

13Of course, in practice the reconstructed density is usually unknown. It is expected that a look-alike
density will be substituted.
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For the origin and further discussion of these formulae consult, for example, section 2.8 in
Ref. [26]. It is assumed that high-order kernels are generated according to Eq. 46.

amiseOptimalBwSymbeta (header file “npstat/stat/amiseOptimalBandwidth.hh”) — cal-
culates AMISE-optimal bandwidth and corresponding expected AMISE according to Eqs. 36
and 37 for fixed-bandwidth KDE with kernels from symmetric beta family as well as with
high-order kernels derived from symmetric beta distributions.

amisePluginBwGauss (header file “npstat/stat/amiseOptimalBandwidth.hh”) —Gaussian
p(x) is substituted in Eqs. 36 and 37 and the corresponding quantities are found for the
Gaussian kernel as well as high-order kernels derived from Gaussian.

amisePluginBwSymbeta (header file “npstat/stat/amiseOptimalBandwidth.hh”) — Gaus-
sian p(x) is substituted in Eqs. 36 and 37 and the corresponding quantities are found for the
kernels from the symmetric beta family as well as high-order kernels derived from symmetric
beta distributions.

miseOptimalBw and gaussianMISE methods of the GaussianMixture1D class — these meth-
ods calculate MISE-optimal bandwidth and the corresponding exact MISE for Gaussian mix-
ture densities estimated with the Gaussian kernel (or high-order kernels derived from the
Gaussian) according to the formulae from Ref. [32].

ConstantBandwidthSmoother1D — This class implements fixed-bandwidth KDE for one-
dimensional samples of points using Gaussian kernels or kernels from the symmetric beta
family (including high-order kernels which are generated internally). Boundary effects can
be alleviated by data mirroring. Kernel convolutions are performed by DFFT after sample
discretization.

ConstantBandwidthSmootherND — This class implements fixed-bandwidth KDE for mul-
tivariate histograms. Arbitrary density implementations which inherit from AbsDistribu-
tionND can be used as weight functions for generating high-order kernels. Boundary effects
can be alleviated by data mirroring.

JohnsonKDESmoother — This class constructs adaptive bandwidth KDE estimates for
one-dimensional samples. It operates in several steps:

— The sample is discretized using centroid-preserving binning.

— Population mean, µ, standard deviation, σ, skewness, s, and kurtosis, k, are estimated
by the arrayShape1D function.

— A distribution from the Johnson system with these values of µ, σ, s, and k is used as
a template for the amiseOptimalBwSymbeta (or amiseOptimalBwGauss) function which
calculates optimal constant bandwidth according to Eq. 36.

— A pilot density estimate is built by KDE (using LocalPolyFilter1D class) with the band-
width determined in the previous step.

— The sample is smoothed by the variableBandwidthSmooth1D function (described below)
using this pilot estimate.

This method achieves better MISE convergence rate without using high-order kernels (so that
density truncation below zero is unnecessary). Give this method a serious consideration if you
are working with one-dimensional samples, expect to reconstruct a unimodal distribution,
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and do not have to worry about boundary effects.
KDECopulaSmoother—multivariate KDE in which extra care is applied in order to ensure

that the estimation result is a bona fide copula (i.e., that all of its marginals are uniform).
This class should normally be used to smooth empirical copula densities constructed by
empiricalCopulaHisto or empiricalCopulaDensity. The bandwidth can be supplied by the user
or it can be chosen by cross-validation. In general, LOrPECopulaSmoother will produce better
results in this context, so KDECopulaSmoother should be used only in case the slower speed
of LOrPECopulaSmoother is deemed unacceptable.

KDEFilterND — A collection of KDEFilterND objects which utilize common workspace
and DFFT engine can be employed to perform cross-validation calculations and bandwidth
scans. Such a collection is used, for example, by the KDECopulaSmoother class described
above. If you already know the bandwidth, the ConstantBandwidthSmootherND class will
likely be more convenient to use than this one.

variableBandwidthSmooth1D— implements one-dimensional variable kernel adaptive KDE
(which should not be confused with local kernel, or balloon, method — see section 2.10 in
Ref. [26] for further discussion). In general, this approach consists in assigning different
bandwidth values to each sample point. In the variableBandwidthSmooth1D function, this
assignment is performed according to the formula

hi =
c

ρ̂α(xi)
, (38)

where ρ̂(x) is a pilot density estimate constructed, for example, by fixed-bandwidth KDE.
Boundary kernel adjustments are performed automatically. The normalization constant c is
determined so that the geometric mean of hi equals to a user-provided bandwidth. There
are certain reasons to believe that the choice of power parameter α = 1/2 is a particularly
good one [33].

simpleVariableBandwidthSmooth1D— a high-level driver function for variable kernel adap-
tive KDE which uses kernels from the symmetric beta family and automatically generates
a pilot density estimate employing AMISE plugin bandwidth.

6.2 Local Orthogonal Polynomial Expansion (LOrPE)

Local Orthogonal Polynomial Expansion (LOrPE) can be viewed as a convenient method for
creating kernels with desired properties (including high-order kernels) and for eliminating
the KDE boundary bias14. LOrPE amounts to constructing a truncated expansion of the
EPDF defined by Eq. 30 into orthogonal polynomial series near each point xfit where we
want to build the initial density estimate:

f̂LOrPE(x|h) =
M∑
k=0

ck(x fit, h)Pk

(
x− xfit

h

)
. (39)

14If you are familiar with orthogonal series density estimators (OSDE), you can also view LOrPE as
a localized version of OSDE.
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The polynomials Pk(x) are built to satisfy the normalization condition

1

h

∫ b

a

Pj

(
x− xfit

h

)
Pk

(
x− x fit

h

)
K

(
x− x fit

h

)
dx = δjk, (40)

which is equivalent to ∫ (b−xfit)/h

(a−xfit)/h

Pj(y)Pk(y)K(y)dy = δjk, (41)

where δjk is the Kronecker delta, K(x) is a suitably chosen kernel function, and [a, b] is
the support interval of the estimated density. For commonly used kernels from the beta
family (Epanechnikov, biweight, triweight, etc.), condition (41) generates the normalized
Gegenbauer polynomials (up to a common multiplicative constant) at points x fit sufficiently
deep inside the support interval, provided h is small enough to guarantee that (a−x fit)/h ≤
−1 and (b− x fit)/h ≥ 1. If x fit is sufficiently close to the boundaries of the density support
[a, b] then the polynomial system will vary depending on x fit, and the notation Pk(·, xfit)
would be more appropriate. However, in the subsequent text this dependence on x fit will be
suppressed in order to simplify the notation.

The expansion coefficients ck(xfit, h) are determined by the usual scalar product of the
expanded function with Pk:

ck(x fit, h) =
1

h

∫
EPDF(x)Pk

(
x− x fit

h

)
K

(
x− x fit

h

)
dx, (42)

which, after substituting EPDF(x) from 30, leads to

ck(x fit, h) =
1

Nh

N−1∑
i=0

Pk

(
xi − x fit

h

)
K

(
xi − x fit

h

)
. (43)

Note that the coefficients ck(x fit, h) calculated according to Eq. 42 can be naturally inter-

preted as localized expectation values of orthogonal polynomials Pk

(
x−xfit

h

)
w.r.t. proba-

bility density EPDF(x) in which localization weights are given by 1
h
K
(

x−x fit
h

)
.

The density estimate at x fit is defined by

p̂LOrPE(x fit|h) = max{0, f̂LOrPE(x fit|h)}. (44)

In general, LOrPE does not produce a bona fide density (in this respect it is similar to the
orthogonal series estimator), and after calculating the density for all x fit values one has to
perform the overall renormalization.

Equation 39 can be usefully generalized as follows:

f̂LOrPE(x|h) =
∞∑
k=0

g(k)ck(xfit, h)Pk

(
x− x fit

h

)
. (45)
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Here, g(k) is a “taper function”. Normally, g(0) = 1 and there is an integer M such that
g(k) = 0 for any k > M . The taper function suppresses high order terms gradually instead
of using a sharp cutoff at M .

When evaluated at points x fit which are sufficiently far away from the density support
boundaries and if K(x) is an even function, Eq. 45 is equivalent to a kernel density estimator
with the effective kernel

K eff(x) = K(x)
∞∑
j=0

g(2j)P2j(0)P2j(x). (46)

Moreover, if g(k) is a step function, i.e., g(k) = 1 for all k ≤ M and g(k) = 0 for all k > M ,
it can be shown that the effective kernel is of order M + 1 if M is odd and M + 2 if M is
even [34]15.

A slightly different modification of LOrPE is based on the following identity:

1

h

∞∑
j=0

Pj

(
x− xi

h

)
Pj (0)K

(
x− xi

h

)
= δ(x− xi). (47)

Substituting this into Eq. 30, we obtain

EPDF(x) =
1

Nh

N−1∑
i=0

∞∑
j=0

Pj

(
x− xi

h

)
Pj (0)K

(
x− xi

h

)
. (48)

The modified density estimate is obtained from this expansion by introducing a taper:

ˆ̂
fLOrPE(x fit|h) =

1

Nh

N−1∑
i=0

∞∑
j=0

g(j)Pj

(
x fit − xi

h

)
Pj (0)K

(
x fit − xi

h

)
(49)

and then truncation is handled just like in Eq. 44. For even kernels and points x fit sufficiently
far away from the density support boundaries, Eq. 49 is equivalent to Eq. 45 evaluated at
x = x fit. However, this is no longer true near the boundaries. Perhaps, the easiest way to
think about it is that, in Eq. 49, an effective kernel is placed at the location of each data
point (and, in general, shapes of these effective kernels depend on the data point location
xi). All these kernels are then summed to obtain the density estimates at all x fit. On the
other hand, in Eq. 45 the effective kernel is placed at the location of each point at which the
density estimate is made (so that the effective kernel shape depends on x fit). This kernel
generates the weights for each data point which are summed to obtain the estimate. The
difference between these two approaches is usually ignored for KDE (simple KDE is unable
to deal with boundary bias anyway), but for LOrPE substantially different results can be
obtained near the boundaries.

15For such kernels the sum in Eq. 46 can be reduced to a simple algebraic form via the Christoffel-Darboux
identity. However, the resulting formula is not easy to evaluate in a numerically stable manner near x = 0.
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It is not obvious a priori which density estimate is better:
ˆ̂
fLOrPE from Eq. 49 or f̂LOrPE

from Eq. 45, although some preliminary experimentation with simple distributions does

indicate that f̂LOrPE typically results in smaller MISE. The integral of the
ˆ̂
fLOrPE estimate

on the complete density support interval is automatically 1 which is not true for f̂LOrPE.
On the other hand, f̂LOrPE admits an appealing interpretation in terms of the local density
expansion 45 in which the localized expectation values of the orthogonal polynomials Pk are
matched to their observed values in the data sample (this also leads to automatic matching
of localized distribution moments about x fit).

One-dimensional KDE with fixed kernel K(x) has only one important parameter which
regulates the amount of smoothing: bandwidth h. LOrPE has two such parameters: band-
width h and the highest polynomial order M (or, in general, the shape of the taper function).
It is intuitively obvious that polynomial modeling should result in a smaller bias than KDE
for densities with several (at least M) continuous derivatives, and that a proper balance of
h and M should result in a better estimator overall.

LOrPE calculations remain essentially unchanged in multivariate settings: the only dif-
ference is switching to multivariate orthogonal polynomial systems.

Even though LOrPE is equivalent to KDE far away from the density support boundaries,
LOrPE does not suffer from the boundary bias because Eq. 41 automatically adjusts the
shape of orthogonal polynomials near the boundary. This makes LOrPE applicable in a wider
set of problems than KDE. In addition to just making better estimates of densities with
a sharp cutoff at the boundary, LOrPE fixes the main problem with some existing KDE-
based methods which are rarely used in practice due to their severe degradation from the
boundary bias. Examples of such methods include transformation kernel density estimation
(see, for example, section 2.10.3 of [26]) in which the transformation target is the uniform
distribution, as well as separate estimation of the marginals and the copula for multivariate
densities.

Unfortunately, LOrPE improvements over KDE do not come without a price in terms of
the algorithmic complexity of the method. The density estimate can no longer be represented
as a simple convolution of the sample EPDF and a kernel. Because of this, DFFT-based
calculations are no longer sufficient. In the LOrPE implementation within NPStat, simple
algorithms are used instead which perform pointwise convolutions. Their computational
complexity scales as O(N) + O(NbNs), where Nb is the number of bins in the sample dis-
cretization histogram and Ns is the number of bins of the same length (area, volume, etc)
inside the kernel support. For large bandwidth values (or for kernels with infinite support)
this essentially becomes O(N) + O(N2

b ) which can be significantly slower than the KDE
implementation based on DFFT.

The following NPStat classes and functions can be used to perform LOrPE and to assist
in choosing the bandwidth:

LocalPolyFilter1D — LOrPE for one-dimensional samples. A numerical Gram-Schmidt
procedure is used to build polynomials defined by Eq. 40 on an equidistant grid. A linear
filter which combines formulae 42 and 45 is then constructed for each grid point x fit from
the density support region (the same “central” filter is used for all xfit points far away
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from the support boundaries). The filter method of the class can then be used to build
density estimates defined by Eq. 45 with x = x fit from sample histograms. Alternatively,
the convolve method can be used to to make estimates according to Eq. 49. If necessary,
subsequent truncation of the reconstructed densities below 0 together with renormalization
should be performed by the user.

WeightTableFilter1DBuilder (header file “npstat/stat/WeightTableFilter1DBuilder.hh”) —
Helper class designed to work with LocalPolyFilter1D. This helper constructs linear filters out
of arbitrary scanned weights utilizing orthogonal polynomials. If it is necessary to introduce
exclusion regions into the data (for example, for the purpose of interpolating background
density from sidebands), constructor of this class is the place where this can be done.

NonmodifyingFilter1DBuilder (header file “npstat/stat/WeightTableFilter1DBuilder.hh”)
— Helper class designed to work with LocalPolyFilter1D. This filter does not change the data
(i.e., this filter is represented by the unit matrix).

getBoundaryFilter1DBuilder (header file “npstat/stat/AbsFilter1DBuilder.hh”) — This
function can be used to construct various filters that inherit from AbsBoundaryFilter1DBuilder
class. These filters differ by the kernel adjustments they perform near the density support
boundaries. Many filters of this kind are declared in the “npstat/stat/Filter1DBuilders.hh”
header file.

PolyFilterCollection1D — A collection of LocalPolyFilter1D objects which can be used, for
example, in bandwidth scans or in cross-validation calculations.

LocalPolyFilterND— similar to LocalPolyFilter1D but intended for estimating multivariate
densities.

SequentialPolyFilterND — similar to LocalPolyFilterND but each dimension is processed
sequentially using 1-d filtering. Employs a collection of LocalPolyFilter1D objects, one for
each dataset dimension.

LOrPECopulaSmoother — multivariate LOrPE in which extra care is applied in order to
ensure that the estimation result is a bona fide copula (i.e., that all of its marginals are uni-
form). This class should normally be used to smooth empirical copula densities constructed
by empiricalCopulaHisto or empiricalCopulaDensity. The bandwidth can be supplied by the
user or it can be chosen by cross-validation. Less reliable but faster calculations of this type
can be performed with the KDECopulaSmoother class described in Section 6.1.

SequentialCopulaSmoother — similar to LOrPECopulaSmoother but each dimension is pro-
cessed sequentially using 1-d filtering.

NonparametricCompositeBuilder — a high-level API for estimating multivariate densities
by applying KDE or LOrPE separately to each marginal and to the copula. This class builds
CompositeDistributionND objects from collections of sample points.

symbetaLOrPEFilter1D (header file “npstat/stat/LocalPolyFilter1D.hh”) — a convenience
utility for building one-dimensional LOrPE filters using kernels from the symmetric beta
family (including the Gaussian).

lorpeMise1D (header file “npstat/stat/lorpeMise1D.hh”) — calculates LOrPE MISE for
an arbitrary known density according to Eq. 33. The support of the density is split into
M subintervals. It is assumed that the sample points are distributed in these subintervals
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according to the multinomial distribution. The covariance matrix of this distribution is
then propagated to the density estimation result. The trace of the propagated covariance,
multiplied by the width of the subinterval, is added to the integrated squared bias in order
to obtain the MISE. Of course, this method reproduces Eq. 33 exactly only in the limit
M → ∞, while in practice the O(M3) computational complexity of the error propagation
formulae (based on conventional matrix multiplication) will necessitate a reasonable choice of
finiteM . I suggest choosingM in such a manner that the ISE introduced by the discretization
of the density is significantly smaller than the estimated MISE.

Further remarks on theoretical development of LOrPE, as well as a comparison of its
performance with other density estimation techniques, can be found in [35].

6.3 Density Estimation with Bernstein Polynomials

Density representation by Bernstein polynomial series is an alternative approach which can
be used to alleviate the boundary bias problem of KDE. Bernstein polynomials are defined
as follows:

bm,n(x) = Cm
n xm(1− x)n−m, (50)

where m = 0, 1, ..., n and Cm
n are the binomial coefficients:

Cm
n =

n!

m!(n−m)!
. (51)

In the density estimation context, Bernstein polynomials are often generalized to non-integer
values of n and m in which case Cm

n is replaced by Γ(n+1)
Γ(m+1)Γ(n−m+1)

. Up to normalization,
this representation is equivalent to the beta distribution with parameters α = m + 1 and
β = n−m+ 1. For notational simplicity, I will use the term “Bernstein polynomials” even
if n and m are not integer.

There are two substantially different variations of this density estimation method. In the
first scheme [36], Bernstein polynomials are used as variable-shape kernels in a KDE-like
formula:

f̂B(x|n) =
n+ 1

N

N−1∑
i=0

bm(x),n(xi), (52)

where it is assumed that the reconstructed density is supported on the [0, 1] interval (nat-
urally, this interval can be shifted and scaled as needed). The requirement of asymptotic
estimator consistency does not fixm(x) uniquely, and this mapping can be chosen in a variety
of ways. In NPStat, the following relationship is implemented:

m(x) =


c if x(n− 2s) + s ≤ c
x(n− 2s) + s if c < x(n− 2s) + s < n− c
n− c if x(n− 2s) + s ≥ n− c

(53)

This formula reproduces the simple mapping m(x) = xn considered in Ref. [36] in case s = 0
and c = 0. The offset parameter s plays the role of effective Bernstein polynomial degree
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used at x = 0 and regulates the amount of boundary bias. Meaningful values of s lie between
−1 and 0. As m → −1, the mean of the generalized Bernstein polynomial kernels tends to
x so that the estimator becomes uniformly unbiased for linear density functions. At the
same time, the width of the kernel tends to 0 at the boundary which leads to an increase in
the estimator variance. As it makes little sense to use kernels whose width is smaller than
the discretization bin size, the cutoff parameter c was introduced. This cutoff effectively
limits kernel width from below in a manner which preserves asymptotic consistency of the
estimator (the useful range of c values is also [-1, 0]). In addition to appropriate selection
of the main bandwidth parameter n, proper choice of parameters s and c can significantly
improve estimator convergence at the boundary.

In the second variation of this density estimation technique [37], the polynomials are
chosen based on the location of the observed points:

ˆ̂
fB(x|n) =

n+ 1

N

N−1∑
i=0

bm(xi),n(x). (54)

For any m and n,
∫ 1

0
bm,n(x)dx = 1

n+1
, so this particular estimate is a bona fide density.

Due to the reasons that will be mentioned later in this subsection, it can be advantageous
to keep integer m and n in this approach. As in the case of x-dependent kernel shape, there
is some amount of freedom in the m(xi) assignment. For asymptotic consistency we must
require that m(xi)/n → xi as n → ∞. However, such assignments are not unique. One
can choose, for example, m(xi) = ⌊xi/(n + 1)⌋ as in Ref. [37] (the symbol ⌊·⌋ stands for
the “floor” function), but it can also be useful to assign more than one polynomial to xi.
The following scheme is implemented in NPStat in addition to the m(xi) assignment just
mentioned. First, an integer k is found such that k + 0.5 ≤ xi(n + 1) < k + 1.5. Then, if
0 ≤ k < n,

m(xi) =

{
k with weight k + 1.5− xi(n+ 1)
k + 1 with weight xi(n+ 1)− k − 0.5

(55)

If k < 0 then m(xi) = 0 with weight 1, and if k >= n then m(xi) = n with weight 1. The
polynomial weighting schemes actually implemented in the code are slightly more compli-
cated as they take into account data binning.

With integer values of m and n, density estimates constructed according to Eq. 54 (or
its weighted version just described) have an important property of being positive doubly

stochastic. What it means is that not only
∫ 1

0

ˆ̂
fB(x|n)dx = 1 but also a sum of an arbitrary

number of separate
ˆ̂
fB(x|n) estimators will be flat in x as long as the sum of xi values used

to build all these estimators is itself flat. If the xi values are flat between 0 and 1 then
assigned m values will be flat between 0 and n (inclusive). Then double stochasticity follows
directly from the partition of unity property of Bernstein polynomials:

∑n
m=0 bm,n(x) =∑n

m=0C
m
n xm(1− x)n−m = [x+ (1− x)]n = 1.

A collection of positive double stochastic estimators can be used for copula filtering by
sequentially applying these estimators in each dimension (with the help of SequentialPolyFil-
terND class). If the initial data set processed by this sequence represents a copula density (for
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example, in case it is an empirical copula density histogram), the result is also guaranteed
to be a copula density.

In NPStat, any density estimator implemented via the LocalPolyFilter1D class can be
turned into closest (in some sense) doubly stochastic estimator by calling the doublyStochas-
ticFilter method of that class. Non-negative estimators will be converted into non-negative
doubly stochastic estimators using an iterative procedure similar to the one described in [38]
while filters with negative entries will be converted into generalized doubly stochastic filters
according to the method described in [39].

The following facilities are provided by NPStat for estimating densities with Bernstein
polynomials and beta distribution kernels:

BetaFilter1DBuilder — Constructs linear filters for LocalPolyFilter1D class according to
Eq. 52.

BernsteinFilter1DBuilder — Constructs linear filters for LocalPolyFilter1D according to
Eq. 54. These filters are intended for use with the convolve method of LocalPolyFilter1D class
rather than the filter method.

betaKernelsBandwidth — This function estimates optimal bandwidth (order n of the gen-
eralized Bernstein polynomial) for Eq. 52 according to the AMISE calculation presented
in [36]. This bandwidth estimate should not be taken very seriously for realistic sample
sizes, as finite sample performance of Bernstein polynomial methods is not well understood.

It is worth mentioning that there are other ways to create doubly stochastic filters. For
example, the filter which represents the discretized Green’s function for the homogeneous 1-d
heat equation with the Neumann boundary conditions is doubly stochastic. This particular
filter can be constructed with the help of the symbetaLOrPEFilter1D function, using Gaussian
kernel and specifying 0 for the degree of the LOrPE polynomial as well as BM FOLD for the
boundary handling option. Subsequently, the convolve method of this filter should be utilized
to smooth the data.

6.4 Using Cross-Validation for Choosing the Bandwidth

Cross-validation is a technique for adaptive bandwidth selection applicable to both KDE
and LOrPE. Two types of cross-validation are supported by NPStat: least squares and
pseudo-likelihood.

The least squares cross-validation is based on the following idea. The MISE from Eq. 33
can be written as

MISE(h) = E

(∫ ∞

−∞
(p̂(x|h)− p(x))2dx

)
= E

(∫ ∞

−∞
p̂2(x|h)dx

)
− 2E

(∫ ∞

−∞
p̂(x|h)p(x)dx

)
+

∫ ∞

−∞
p2(x)dx.

The last term,
∫∞
−∞ p2(x)dx, does not depend on h, so minimization of MISE is equivalent to

minimization of B(h) ≡ E
(∫∞

−∞ p̂2(x|h)dx− 2
∫∞
−∞ p̂(x|h)p(x)dx

)
. Of course, p(x) itself is
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unknown. However, it can be shown (as in section 3.4.3 of [21]) that an unbiased estimator
of B(h) can be constructed as

LSCV(h) =

∫ ∞

−∞
p̂2(x|h)dx− 2

N

N−1∑
i=0

p̂−1,i(xi, h), (56)

where p̂−1,i(x, h) is a “leaving-one-out” density estimator to which the point at xi does not
contribute. For example, in the case of KDE this estimator is defined by

p̂−1,i(x|h) =
1

(N − 1)h

N−1∑
j=0

j ̸=i

K

(
x− xj

h

)
. (57)

Minimization of LSCV(h) can lead to a reasonable bandwidth estimate, hLSCV. However,
as hLSCV is itself a random quantity, its convergence towards the bandwidth that optimizes
MISE, hMISE, is known to be rather slow. Moreover, LSCV(h) can have multiple minima,
so its minimization is best carried out by simply scanning h within a certain range in the
proximity of some value h∗ suggested by plug-in methods. For more information on the
issues related to the least squares cross-validation see Refs. [21, 26].

The pseudo-likelihood cross-validation (also sometimes called likelihood cross-validation)
is based on maximizing the “leaving-one-out” likelihood:

PLCV(h) =
N−1∏
i=0

p̂−1,i(xi, h) (58)

The criterion of maximum PLCV(h) can be obtained by minimizing an approximate Kullback-
Leibler distance between the density and its estimate [21]. Maximizing PLCV(h) is only
appropriate in certain situations. In particular, whenever p̂−1,i(xi, h) becomes 0 even for
a single point, this criterion fails to produce meaningful results. Its use is also problematic
for densities with infinite support due to the strong influence fluctuations in the distribution
tails exert on PLCV(h). Because of these problems, NPStat implements a “regularized”
version of PLCV(h) defined by

RPLCV(h) =
N−1∏
i=0

max

(
p̂−1,i(xi, h),

p̂ self,i(xi, h)

Nα

)
, (59)

where α is the regularization parameter chosen by the user (α = 1/2 usually works reasonably
well) and p̂ self,i(x, h) is the contribution of the data point at xi into the original density
estimator. For KDE, this contribution is

p̂ self,i(x|h) =
1

Nh
K

(
x− xi

h

)
. (60)

If the bandwidth is fixed, p̂ self,i(xi|h) = K(0)/(Nh) for every point xi. p̂ self,i(xi, h) changes
from one point to another for LOrPE and for variable-bandwidth KDE.
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Cross-validation in the NPStat package is implemented for discretized KDE and LOrPE
density estimators. It is assumed that the optimal bandwidth corresponds to the maximum
of some quantity, as in the case of RPLCV(h). All classes which perform cross-validation for
univariate densities inherit from the abstract base class AbsBandwidthCV1D. For multivariate
densities, the corresponding base class is AbsBandwidthCVND (both of these base classes are
declared in the header file “npstat/stat/AbsBandwidthCV.hh”). The following concrete
classes can be used:

BandwidthCVLeastSquares1D — implements Eq. 56 for KDE and LOrPE in 1-d.
BandwidthCVLeastSquaresND — implements Eq. 56 for multivariate KDE and LOrPE.
BandwidthCVPseudoLogli1D — implements Eq. 59 for KDE and LOrPE in 1-d.
BandwidthCVPseudoLogliND — implements Eq. 59 for multivariate KDE and LOrPE.

The cross-validation classes are used internally by such high-level classes as KDECopulaS-
moother, LOrPECopulaSmoother, and SequentialCopulaSmoother.

6.5 The Nearest Neighbor Method

Using NPStat tools, a simple density estimation algorithm similar to the k-nearest neighbor
method [21] can be implemented for one-dimensional samples as follows:

— Discretize the data using a finely binned histogram.

— Convert this histogram into a distribution by constructing a BinnedDensity1D object.

— For any point x at which a density estimate is desired, calculate the corresponding
cumulative distribution value y = F (x).

— For some interval ∆, 0 < ∆ < 1, estimate the density at x by

p̂NN(x) =
∆

q(y +∆/2) − q(y −∆/2)
, (61)

where q(y) is the quantile function: q(F (x)) = x. This formula assumes y −∆/2 ≥ 0
and y +∆/2 ≤ 1. If y +∆/2 > 1 then the p̂NN(x) denominator should be replaced by
q(1) − q(1−∆), and if y−∆/2 < 0 then the denominator should become q(∆) − q(0).

In this approach, the parameter ∆ plays the same role as the k/N ratio in the standard
k-nearest neighbor method. For best results, ∆ should scale with the number of sample
points as N−1/5, and the optimal constant of proportionality depends on the estimated
density itself [21]. The k-nearest neighbor method (and its modification just described) is
not recommended for estimating densities with infinite support as it leads to a diverging
density integral.

For multivariate samples, a similar estimate can be constructed with the help of HistoND-
Cdf class. Its method coveringBox can be used to find the smallest d-dimensional box with
the given center and fixed proportions which encloses the desired sample fraction.
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7 Nonparametric Regression

“Regression” refers to a form of data analysis in which the behavior of the dependent variable,
called “response”, is deduced as a function of the independent variable, called “predictor”,
from a sample of observations. The response values are considered random (e.g., contam-
inated by noise) while the predictor values are usually assumed to be deterministic. The
analysis purpose is thus to determine the location parameter of the response distribution
(mean, median, mode, etc) as a function of the predictor. In the NPStat algorithms, the
response is always assumed to be a univariate quantity while the predictor can be either
univariate or multivariate. In the discussion below, predictor will be denoted by x, response
by y, µ(x) will be used to describe the response location function, and µ̂(x) will denote
an estimator of µ(x).

“Nonparametric regression” refers to a form of regression analysis in which no global
parametric model is postulated for µ(x). Instead, for every xfit, µ(x) is described in the
vicinity of xfit by a relatively simple model which is fitted using sample points located
nearby. Further discussion of µ(x) estimation depends critically on the assumptions which
can be made about the distribution of response values.

7.1 Local Least Squares

With the additional assumption of Gaussian error distribution (i.e., yi = µ(xi) + ϵi, where
ϵi are normally distributed with mean 0 and standard deviation σi), the model fitting can
be efficiently performed by the method of local least squares. In this method, µ̂(x) is found
by minimizing the quantity:

χ2(xfit, h) =
N−1∑
i=0

(
yi − µ̂(xi|xfit, h)

σi

)2

Kh(xi − xfit). (62)

Here, h refers to one or more parameters which determine the extent of the kernel Kh(x).
In NPStat, µ̂(x|xfit, h) is usually decomposed into orthogonal polynomials. In the case of
univariate predictor,

µ̂(x|x fit, h) =
M∑
k=0

âk(x fit, h)Pk

(
x− x fit

h

)
, (63)

where polynomials Pk(x) are subject to normalization condition 40. The expansion coef-
ficients âk(x fit, h) are determined from the equations ∂χ2(x fit, h)/∂âk = 0 which leads to
M + 1 simultaneous equations for k = 0, 1, ...,M :

N−1∑
i=0

1

σ2
i

(
yi −

M∑
j=0

âj(x fit, h)Pj

(
xi − xfit

h

))
K

(
xi − xfit

h

)
Pk

(
xi − x fit

h

)
= 0. (64)
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If the predictor values xi are specified on a regular grid of points then the discretized
version of Eq 40 is just

hg

h

N−1∑
i=0

Pj

(
xi − x fit

h

)
K

(
xi − x fit

h

)
Pk

(
xi − x fit

h

)
= δjk, (65)

where hg is the distance between any two adjacent values of xi. This leads to a particularly
simple solution for âk(x fit, h) if the model can be assumed at least locally homoscedastic
(i.e., if all σi are the same in the vicinity of x fit):

âk(x fit, h) =
hg

h

N−1∑
i=0

yiK

(
xi − xfit

h

)
Pk

(
xi − x fit

h

)
. (66)

Substituting this into Eq. 63, one gets

µ̂(xfit|h) =
hg

h

N−1∑
i=0

M∑
k=0

yiK

(
xi − x fit

h

)
Pk

(
xi − x fit

h

)
Pk(0). (67)

If K(x) is an even function and x is far away from the boundaries of the interval on which the
regression is performed, Eq. 67 is equivalent to the well-known Nadaraya-Watson estimator,

µ̂NW (xfit|h) =

∑N−1
i=0 yiK eff

(
xi−xfit

h

)
∑N−1

i=0 K eff

(
xi−x fit

h

) , (68)

with the effective kernel given by

K eff(x) =
M∑
k=0

Pk(0)Pk(x)K(x). (69)

Just as in the case of LOrPE, a taper function can be introduced for this kernel which leads
to Eq 46.

If the predictor values xi are arbitrary or if the model can not be considered homoscedastic
even locally, there is no simple formula which solves the linear system 64. In this case the
equations must be solved numerically. To perform this calculation, NPStat calls appropriate
routines from LAPACK [40].

Generalization of local least squares methods to multivariate predictors is straightforward:
one simply switches to multivariate kernels and polynomial systems.

The following NPStat classes can be used to perform local least squares regression of
locally homoscedastic polynomial models on regular grids:

LocalPolyFilter1D, LocalPolyFilterND, and SequentialPolyFilterND — these classes have
already been mentioned in Section 6.2. It turns out that LOrPE of discretized data essentially
amounts to local least squares regression on histogram bin contents. To see that, compare
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Eqs. 66 and 42. Up to an overall normalization constant, Eq. 66 is just a discretized version
of Eq. 42. In fact, all three “PolyFilter” classes actually perform local least squares regression
which, in the signal analysis terminology, is a linear filtering procedure. If the result is to be
treated as a density, it has to be truncated below zero and renormalized by the user.

QuadraticOrthoPolyND — this class supports a finer interface to the local least squares
regression functionality on a grid than LocalPolyFilterND, but only for polynomials up to
second degree. In addition to the response itself, this class can be used to calculate the
gradient and the hessian of the local response surface defined by Eq. 6316. The predic-
tor/response data can be provided by a method of some class (callback) which is sometimes
more convenient than using just a grid of points.

LocalQuadraticLeastSquaresND — this class fits local least squares regression models for
arbitrary multivariate predictor values (no longer required to be on a grid). The models
can be heteroscedastic, as in the most general case of Eq. 64. The polynomials can be at
most quadratic. Calculation of the gradient and the hessian of the local response surface is
supported.

7.2 Local Logistic Regression

For regressing binary response variables, NPStat implements a method known as “local
quadratic logistic regression” (LQLR). This method is a trivial extension of the local linear
logistic regression originally proposed in [41]. In this type of analysis, “response” is the
probability of success in a Bernoulli trial, estimated as a function of one or more predictors.
Due to the manner in which it is often used, this probability will be called “efficiency” for
the remainder of this section.

In the LQLR model, the efficiency dependence on x is represented by

ϵ(x) =
1

1 + e−P (x)
(70)

where P (x) is a multivariate quadratic polynomial whose coefficients are determined at each
predictor value xfit by maximizing the local log-likelihood:

L(xfit, h) =
N−1∑
i=0

Kh(xi − xfit) [yi ln(ϵ̂(xi)) + (1− yi) ln(1− ϵ̂(xi))] . (71)

Here, Kh(xi − xfit) is a suitable localizing kernel which decays to 0 when xi is far from xfit,
and yi are the observed values of the Bernoulli trial: 1 if the point “passes” and 0 if it “fails”.
The local log-likelihood 71 is very similar to the one implemented in the Locfit package [42],
the only difference is that orthogonal polynomials are used in NPStat to construct P (x)
series instead of monomials.

Setting partial derivatives of L(xfit, h) with respect to polynomial coefficients to 0 results
in a system of nonlinear equations for these coefficients. Solving such a system of equations

16This can be useful, for example, for summarizing properties of log-likelihoods defined on grids in the
space of estimated parameters for some parametric statistical models.
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does not appear to be any easier than dealing with the original log-likelihood optimization
problem by applying, let say, the Levenberg-Marquardt algorithm [43].

NPStat includes facilities for efficient calculation of the LQLR log-likelihood together
with its gradient with respect to P (x) expansion coefficients. This code does not rely on any
specific optimization solver, and can be easily interfaced to a number of different external
optimization tools. The relevant classes are:

LogisticRegressionOnKDTree (header file “npstat/stat/LocalLogisticRegression.hh”) — this
class calculates the log-likelihood from Eq. 71 in the assumption that the kernel Kh(x) has
finite support. In this case iterating over all N points in the sample becomes rather ineffi-
cient: there is no reason to cycle over values of xi far away from xfit because Kh(xi−xfit) is
identically zero for all such points. To automatically restrict the iterated range, the predictor
values are arranged into a space-partitioning data structure known as k-d tree [44] which is
implemented in NPStat with the KDTree class (header file “npstat/nm/KDTree.hh”).

LogisticRegressionOnGrid (header file “npstat/stat/LocalLogisticRegression.hh”) — this
class calculates the log-likelihood from Eq. 71 in the assumption that the predictor values
are histogrammed. Two identically binned histograms must be available: the one with all
values of yi (“the denominator”) and the one which collects only those xi for which yi = 1
(“the numerator”). Naturally, only the bins sufficiently close to xfit are processed when the
LQLR log-likelihood is evaluated for these histograms.

The “interfaces” directory of the NPStat package includes two high-level driver functions
for fitting LQLR response surfaces (header file “npstat/interfaces/minuitLocalRegression.hh”).
These functions employ a general-purpose optimization package Minuit [1] for maximizing
the log-likelihood. The names of the functions areminuitUnbinnedLogisticRegression (intended
for use with LogisticRegressionOnKDTree) and minuitLogisticRegressionOnGrid (for use with
LogisticRegressionOnGrid). To use these functions, the Minuit package has to be compiled
and linked together with the user code which provides the data and calls the functions.

7.3 Local Quantile Regression

The method of least squares allows us to solve the problem of response mean determination
in the regression context. By recasting calculation of the sample mean as a minimization
problem, we have gained the ability to condition the mean on the value of the predictor.
In a similar manner, the method of least absolute deviations can be used to determine
conditional median. In the method of least squares, the expression S(f) =

∑
i f(yi − µ̂(xi))

is minimized, with f(t) = t2. The method of least absolute deviations differs only by setting
f(t) = |t|. Moreover, just like the problem of determination of response mean can be localized
by introducing a kernel in the predictor space (resulting in local least squares, as in Eq. 62),
the problem of response median determination can be subjected to the same localization
treatment. As a method of determination of response location, local median regression is
extremely robust (insensitive to outliers).

Not only the median but an arbitrary distribution quantile can also be determined in
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this manner. The corresponding function to use is

fq(t) = q t I(t ≥ 0)− (1− q) t I(t < 0), (72)

where q is the cumulative distribution value of interest, 0 < q < 1. You can easily convince
yourself of the validity of this statement as follows. For a sample of points y0, ..., yN−1, define
t = y−yq, where yq is a parameter on which S(fq) depends. The condition for the minimum

of S(fq),
dS(fq)

dyq
= 0, is then equivalent to dS(fq)

dt
= 0. As dfq(t)

dt
= q I(t > 0)− (1− q) I(t < 0),

the minimum of S(fq) is reached when

q

N−1∑
i=0

I(yi > yq)− (1− q)
N−1∑
i=0

I(yi < yq) = 0. (73)

This equation is solved when the number of sample points for which yi > yq is (1− q)N and
the number of sample points for which yi < yq is qN . But this is precisely the definition of
the sample quantile which, in the limit N → ∞, becomes the population quantile of interest.

Unfortunately, solving Eq. 73 numerically in the regression context is usually significantly
more challenging than solving the corresponding χ2 minimization problem. For realistic finite
samples, dS(fq)

dyq
is not a continuous function, and Eq. 73 can have multiple solutions. This

basically rules out the use of standard gradient-based methods for S(fq) minimization.
The following NPStat classes facilitate the solution of the local quantile regression prob-

lem:
QuantileRegression1D — calculates the expression to be minimized (also called the “loss

function”) for a single univariate predictor value xfit. This expression looks as follows:

SLQR(x fit) =
N−1∑
i=0

fq(yi − ŷq(xi|x fit))wi, (74)

where weights wi are provided by the user (for example, these weights can be calculated as
wi = K((xi − x fit)/h), but more sophisticated weighting schemes can be applied as well).
The quantile dependence on the predictor is modeled by

ŷq(x|x fit) =
M∑
k=0

âk(x fit)Pk

(
x− x fit

h

)
, (75)

where Pk(x) are either Legendre or Gegenbauer polynomials. The use of Legendre poly-
nomials is appropriate for a global fit of the regression curve, while Gegenbauer polynomi-
als are intended for use in combination with symmetric beta kernels that generate local-
izing weights wi. The expansion coefficients âk(x fit) are to be determined by minimizing
SLQR(x fit).

QuantileRegressionOnKDTree (header file “npstat/stat/LocalQuantileRegression.hh”) —
calculates the quantile regression loss function for a multivariate predictor (the class method
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which returns it is called linearLoss):

SLQR(xfit, h) =
N−1∑
i=0

fq(yi − ŷq(xi|xfit))Kh(xi − xfit). (76)

The quantile dependence on the predictor is modeled by an expansion similar to Eq. 75
in which multivariate orthogonal polynomials (up to second order) are generated by Kh(x)
used as the weight function. The expansion coefficients are to be determined for each xfit

separately by minimizing SLQR(xfit, h). The predictor values are arranged into a k-d tree
structure for reasons similar to those mentioned when the LogisticRegressionOnKDTree class
was described.

QuantileRegressionOnHisto (header file “npstat/stat/LocalQuantileRegression.hh”) — cal-
culates loss function 76 in the assumption that the response is histogrammed on a regular
grid of predictor values (so that the input histogram dimensionality is larger by one than
the dimensionality of the predictor variable).

CensoredQuantileRegressionOnKDTree (header “npstat/stat/ensoredQuantileRegression.hh”)
— this class constructs an appropriate quantile regression loss function in case some of the
response values are unavailable due to censoring (i.e., there is a cutoff from above or from
below on the response values). For example, this situation can occur in modeling of jet
response of a particle detector when jets with visible energy below certain cutoff are not
reconstructed due to limitations in the clustering procedure. It is assumed that the censor-
ing efficiency (i.e., the fraction of points not affected by the cutoff) can be determined as
a function of the predictor by other techniques, like the local logistic regression described in
section 7.2. It is also assumed that the cutoff value is known as a function of the predictor,
and that the presence of this cutoff is the only reason for inefficiency. The appropriate loss
function in this case is

SCLQR(xfit, h) =

N p−1∑
i=0

[
fq(yi − ŷq(xi|xfit)) +

1− ϵi
ϵi

gq(ϵi, ycut,i − ŷq(xi|xfit))

]
Kh(xi − x fit),

(77)
where the summation is performed only over the Np points in the sample surviving the cutoff.
ϵi is the censoring efficiency for the given xi. The function gq(ϵ, t) is defined differently for
right-censored (R-C) samples in which surviving points are below the cutoff and left-censored
(L-C) samples in which surviving points are above the cutoff:

gq,R-C(ϵ, t) = I(q < ϵ)fq(t) + I(q ≥ ϵ)

(
q − ϵ

1− ϵ
fq(t) +

1− q

1− ϵ
fq(+∞)

)
(78)

gq,L-C(ϵ, t) = I(q > 1− ϵ)fq(t) + I(q ≤ 1− ϵ)

(
1− ϵ− q

1− ϵ
fq(t) +

q

1− ϵ
fq(−∞)

)
(79)

Formulae 77, 78, and 79 were inspired by Ref. [45]. They can be understood as follows.
Consider, for example, a right-censored sample. If this sample was not censored, the value of
the response cumulative distribution function at ycut,i would be equal ϵi. For each point with
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response yi below the cutoff, there are (1 − ϵi)/ϵi unobserved points above the cutoff (and
1/ϵi points total). Before localization, points below the cutoff contribute the usual amount
fq(yi − ŷq(xi|xfit)) into SCLQR(xfit, h) (compare with Eq. 76). To the points above cutoff,
we assign the value of response which equals either ycut,i or +∞, in such a manner that the
estimate ŷq(xi|xfit) is “pushed” in the right direction and by the right amount when it crosses
ycut,i. If the estimated quantile is less than the efficiency, all unobserved points are assigned
the response value ycut,i (this corresponds to the term I(q < ϵ)fq(t) in the Eq. 78). This is
because we know that the correct value of ŷq(xi|xfit) should be below ycut,i, so the penalty
for placing ŷq(xi|xfit) above the cutoff is generated by all points, including the unobserved
ones. If the chosen quantile is larger than the efficiency, the only thing we know is that the
correct value of ŷq(xi|xfit) should be inside the interval (ycut,i,+∞). There is no reason to
prefer any particular value from this interval, so the overall contribution of sample point
i for which ŷq(xi|xfit) ∈ (ycut,i,+∞) into SCLQR(xfit, h) must not depend on ŷq(xi|xfit)

17

We do, however, want to prevent ŷq(xi|x fit) from leaving this interval. This is achieved by
placing so many points at ycut,i that the fraction of sample points (including both observed
and unobserved ones) at or below ycut,i is exactly q, and this is precisely what the term
proportional to I(q ≥ ϵ) does in Eq. 78. Similar reasoning applied to a left-censored sample
leads to Eq. 79.

Naturally, in the computer program, −∞ and +∞ in Eqs. 78 and 79 should be replaced
by suitable user-provided numbers which are known to be below and above, respectively,
all possible response values. In order to avoid deterioration in SCLQR(xfit, h) numerical
precision, these numbers should not be very different from the minimum and maximum
observed response.

CensoredQuantileRegressionOnHisto (header “npstat/stat/ensoredQuantileRegression.hh”)
— this class calculates the loss function 77 in the assumption that all information about re-
sponse, efficiency, and cutoffs is provided on a regular grid in the space of predictor values.

The “interfaces” directory of the NPStat package includes several high-level driver func-
tions for performing local quantile regression. These driver functions use the simplex mini-
mization method of the Minuit package to perform local fitting of the quantile curve expan-
sion coefficients. minuitLocalQuantileRegression1D function uses QuantileRegression1D class
internally to perform local quantile regression with one-dimensional predictors. This driver
function can be used, for example, to construct Neyman belts from numerical simulations
of some statistical estimator. A similar function, weightedLocalQuantileRegression1D, can be
used to perform local quantile regression with one-dimensional predictors when the points
are weighted. The minuitQuantileRegression driver function can use one of the QuantileRe-
gressionOnKDTree, QuantileRegressionOnHisto, CensoredQuantileRegressionOnKDTree, or Cen-
soredQuantileRegressionOnHisto classes (all of which inherit from a common base) to perform
local quantile regression with multivariate predictors. The function minuitQuantileRegres-
sionIncrBW has similar functionality but it can also automatically increase the localization

17If most points xi are like that for some x fit value, the fit becomes unreliable. Consider increasing the
bandwidth of the localization kernel or avoid such situations altogether. You should not expect to obtain
good results for high (low) q values and all possible x fit in a right (left)-censored sample.
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kernel bandwidth so that not less than a certain predefined fraction of the whole sample
participates in the the local quantile determination for each xfit.

7.4 Iterative Local Least Trimmed Squares

The NPStat package includes an implementation of an iterative local least trimmed squares
(ILLTS) algorithm applicable when predictor/response values are supplied on a regular grid
of points in a multivariate predictor space (think image denoising). The algorithm operation
consists of the following steps:

1. Systems of orthogonal polynomials up to user-defined degree M are constructed using
weight functions Kh,−j(x). These weight functions are defined using symmetric finite
support kernels in which the point in the kernel center together with j−1 other points
are set to 0. Imagine, for example, a 5 × 5 grid in two dimensions. Start with the
uniform Kh(x) kernel which is 1 at every grid point. The Kh,−1(x) weight function is
produced from Kh(x) by setting the central grid cell to 0. 24 weight functions of type
Kh,−2(x) are produced from Kh,−1(x) by setting one other grid cell to 0, in addition to
the central one. 276 weight functions of type Kh,−3(x) are produced from Kh,−1(x) by
choosing 2 out of 24 remaining cells which are set to 0, and so on.

2. Local least squares regression is performed using all polynomial systems generated by
Kh,−j(x) weights for all possible positions of the kernel inside the predictor grid (sliding
window)18. For each kernel position, we find the polynomial system which produces
the best χ2 calculated over grid points for which the weight function is not 0. For this
polynomial system, we determine the value ∆ = |yc−yc,fit| for the kernel center, where
yc is the response value in the data sample and yc,fit is the response value produced by
the local least squares fit.

3. The position of the kernel is found for which ∆ is the largest in the whole data sample.

4. The response for the position found in the previous step is adjusted by setting it to
the value fitted at the kernel center.

5. ∆ is recalculated for all kernel positions affected by the adjustment performed in the
previous step.

6. The previous three steps are repeated until some stopping criterion is satisfied. For
example, the requirement that the largest ∆ in the grid becomes small (below certain
cutoff) can serve as such a stopping criterion.

The ILLTS algorithm works best if the fraction of outliers in the sample is relatively
small and the response errors are homoscedastic. ILLTS is expected to be more efficient (in
the statistical sense) than the local quantile regression. If the spectrum of response errors is

18Edge effects are taking into account by constructing special polynomial systems which use boundary
kernels similar to Kh,−j(x) but with different placement of zeros.
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not known in advance, it becomes very instructive to plot the history of ∆ values for which
response adjustments were performed. This plot often exhibits two characteristic “knees”
which correspond to the suppression of outliers and suppression of “normal” response noise.
The procedure can be stopped somewhere between these knees and followed up by normal
local least squares on the adjusted sample, perhaps utilizing different bandwidth.

Unfortunately, computational complexity of the ILLTS algorithm is increasing exponen-
tially with increasing j, so only very small values of j are practical. The inability to use
high values of j can be partially compensated for by choosing smaller bandwidth values and
performing more iteration cycles. More cycles result in larger effective bandwidth — think,
for example, what happens when you perform local least squares multiple times. For certain
kernels like Gaussian or Cauchy (i.e., stable distributions) and polynomial degree M = 0
(local constant fit), this is exactly equivalent to choosing larger bandwidth. For other types
of kernels not only the effective bandwidth increases with the number of passes but also the
effective kernel shape gets modified19.

The top-level API function for running the ILLTS algorithm is called griddedRobustRe-
gression. The Kh,−1(x) weights can be used by supplying an object of WeightedLTSLoss type
as its loss calculator argument, and Kh,−2(x) weights are used by choosing TwoPointsLTSLoss
instead. A simple stopping criterion based on the ∆ value, local least trimmed squares χ2, or
the number of adjustment cycles can be specified with an object of GriddedRobustRegression-
Stop type. The griddedRobustRegression implementation is rather general, and can accept
user-developed loss calculators and stopping criteria.

7.5 Organizing Regression Results

It is usually desirable to calculate the regression surface on a reasonably fine predictor
grid and save the result of this calculation for subsequent fast lookup. A general iner-
face for such a lookup is provided by the AbsMultivariateFunctor class (header file “np-
stat/nm/AbsMultivariateFunctor.hh”). This class can be used to represent results of both
parametric and nonparametric fits.

Persistent classes StorableInterpolationFunctor and StorableHistoNDFunctor derived from
AbsMultivariateFunctor are designed to represent nonparametric regression results. Both of
these classes assume that the regression was performed on a (hyper)rectangular grid of predic-
tor points. StorableInterpolationFunctor supports multilinear interpolation and extrapolation
of results, with flexible extrapolation (constant or linear) for each dimension beyond the
grid boundaries. This class essentially combines the AbsMultivariateFunctor interface with
the functionality of the LinInterpolatedTableND class discussed in more detail in Section 11.

The class StorableHistoNDFunctor allows for constant, multilinear, and multicubic inter-
polation20 inside the grid boundaries, and for constant extrapolation outside the boundaries

19ILLTS adds the dimension of time (adjustment cycle number) to the solution of robust regression prob-
lem. It would be interesting to explore this, for example, by introducing time-dependent bandwidth or by
studying the connection between the ILLTS updating scheme and the numerous updating schemes employed
in solving partial differential equations.

20Multicubic interpolation is supported for uniform grids only.
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(the extrapolated response value is set to its value at the closest boundary point). Both
StorableInterpolationFunctor and StorableHistoNDFunctor support arbitrary transformations
of the response variable via a user-provided functor. If a transformation was initially applied
to the response values in order to simplify subsequent modeling, this is a good place to
perform the inverse.

8 Unfolding with Smoothing

In particle physics, the term unfolding is used to describe methods of nonparametric recon-
struction of probability densities using observations affected by particle detector resolution
and inefficiency (see [46] for a contemporary review). In other natural sciences, the term in-
verse problem is commonly used [47], while in the statistical literature a more specific name,
deconvolution density estimate, is becoming the norm [48].

8.1 Unfolding Problem

For the purpose of stating the unfolding problem, it will be assumed that the detector can be
described by an operator K. This operator (also called kernel, transfer function, observation
function, or response function, depending on the author and context) converts probability
densities p(x) in the physical process space x into the densities q(y) in the observation space
y: q = Kp ≡

∫
K(y,x)p(x)dx. The response function does not have to be fully efficient: q

does not have to integrate to 1 when p is normalized. In the subsequent discussion, operator
K will be assumed linear and exactly known but not necessarily invertible.

In many situations of interest, observations are described by the empirical density func-
tion (i.e., there is no error term associated with each individual observation):

ρe(y) =
1

N

N∑
i=1

δ(y − yi). (80)

In this case, the probability to observe a point at yi is given by the normalized version of q
called r: r = q/ϵ. In case p is normalized,

ϵ =

∫
q(y)dy =

∫
Kpdy (81)

is the overall detector acceptance for the physical process under study.
The purpose of unfolding is to learn as much as possible about p(x) given ρe(y) when

a parametric model for p(x) is lacking. The difficulty of this problem can be easily appre-
ciated from the following argument. K typically acts as low pass filter. For measurements
of a single scalar quantity, it can often be assumed that the detector has resolution σ and
that K(y, x) = N (y − x, σ2), so that the detector simply convolves p(x) with the normal
distribution. If q was exactly known, the Fourier transform of p could simply be obtained
from p(ω) = q(ω)/K(ω). As q(ω) is not known, the closest available approximation is the
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characteristic function of ρe(y): ρe(ω) =
∫
ρe(y)e

iωydy = 1
N

∑N
i=1 e

iωyi . As the characteristic

function of the normal distribution is just K(ω) = e−σ2ω2/2, the ratio ρe(ω)/K(ω) becomes
arbitrarily large as ω → ∞. The “naive” method of estimating p(ω) as ρe(ω)/K(ω) thus fails
miserably: the high frequency components of the noise contained in the ρe(ω) are multiplied
by an arbitrarily large factor so that ρe(ω)/K(ω) isn’t even square-integrable.

A number of effective approaches to solving the pure deconvolution problem just de-
scribed are discussed in [48]. These approaches invariably involve introduction of additional
smoothness assumptions about either p(x) or q(y) or both. Such assumptions essentially
declare that the high frequency components of p(x) are of little interest and, therefore, can
be suppressed in the ρe(ω)/K(ω) ratio (so that the inverse Fourier transform can exist). In-
troduction of new information by applying additional assumptions which make an originally
ill-posed problem treatable is called regularization.

In the problems of interest for particle physics, the action of K(y,x) on p(x) is usu-
ally more complicated than simple convolution. At the time of this writing, reconstruction
of p(x) in particle physics applications is most often performed by either the SVD unfold-
ing [49] or the expectation-maximization (a.k.a. D’Agostini, or Bayesian) unfolding [50]21.
Both of these methods start with the assumption that x and y spaces are binned, and that
partitioning of these spaces is beyond the control of the method. In the SVD unfolding,
one-dimensional x is assumed, and the regularization is performed by penalizing discretized
second derivative of the p(x) density22. In the expectation-maximization unfolding, regular-
ization usually consists in imposing a subjective limit on the number of iteration cycles. This
early stopping criterion penalizes deviations from the prior distribution used to start the it-
erations. However, due to the method nonlinearity, it is difficult to augment this statement
with analytical derivations of the penalty applicable to arbitrary response functions.

It should be appreciated that, for these methods, the sample binning itself serves as a part
of problem regularization. Just imagine making very wide bins — this leads to a response
matrix which is almost diagonal and easily invertible. However, information about small
structures within each bin is now lost.

8.2 EMS Unfolding

The unfolding method implemented in NPStat combines smoothing in the x space with the
expectation-maximization iterations performed until convergence. This combination (abbre-
viated as EMS — expectation-maximization with smoothing) has important advantages over
SVD unfolding and expectation-maximization with early stopping:

— Ad hoc binning is no longer needed. While the solution is still implemented on a grid,
the cell width can be chosen sufficiently fine so that discretization does not affect the
results.

21In other disciplines, utility of these methods has been discovered earlier [46].
22This regularization technique has been reinvented many times. Depending on the problem, is also called

the constrained linear inversion method, the Phillips-Twomey method, the Tikhonov regularization, or the
ridge-parameter approach [47, 48].
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— Precise response functions can be employed instead of their coarsely binned versions
affected by prior distribution assumptions.

— Problem regularization can be unambiguously described in terms of the parameters of
the smoothing filter used (bandwidth, etc).

While the empirical success of the EMS unfolding method has already been reported in the
statistical literature [51, 52, 50], the procedures implemented in NPStat also address the
issues of uncertainty estimation for the reconstructed distribution and of choosing the filter
parameters according to an objective criterion.

The method proceeds as follows. The standard expectation-maximization iterations up-
date the reconstructed values of p(x) according to the formula [51, 52]

λ
(k+1)
j =

λ
(k)
j

ϵj

n∑
i=1

Kijyi∑m
ρ=1 Kiρλ

(k)
ρ

. (82)

Here, λ
(k)
j are the unnormalized p(x) values (event counts) discretized on a sufficiently fine

grid in the physical process space x (whose cells are small in comparison with the typical
size of response function features), obtained on a kth iteration. The index j = 1, ...,m refers

to the linearized cell number in this (possibly multidimensional) grid. All λ
(0)
j values (the

starting point for the iterations) can normally be set to the same constant c = N/(ϵm), where
N is the number of observed events and ϵ is the overall detector efficiency for a constant p(x).
yi, i = 1, ..., n, denotes the number of observed events inside the cell with linearized index
i in the space of observations y. Dimensionalities of the x and y spaces can be arbitrary
and distinct. Kij is the discretized response matrix. It is the probability that an event from
the physical cell j causes an observation in the cell i of the y space. ϵj =

∑n
i=1 Kij is the

detector efficiency for the physical cell j.
These iterations are modified by introducing a smoothing step. The updating scheme

becomes

λ
∗(k+1)
j =

λ
(k)
j

ϵj

n∑
i=1

Kijyi∑m
ρ=1Kiρλ

(k)
ρ

, (83)

λ(k+1)
r = α(k+1)

m∑
j=1

Srjλ
∗(k+1)
j , (84)

where Srj is the smoothing matrix, and the smoothing step normalization constant, α(k+1),
preserves the overall event count obtained during the preceding expectation-maximization
step (so that

∑m
r=1 λ

(k+1)
r =

∑m
j=1 λ

∗(k+1)
j ). The values λ

(∞)
j obtained upon iteration conver-

gence are therefore solutions of the equation

λ(∞)
r = α(∞)

m∑
j=1

Srj

λ
(∞)
j

ϵj

n∑
i=1

Kijyi∑m
ρ=1 Kiρλ

(∞)
ρ

, (85)

where α(∞) =
∑m

r=1 λ
∗(∞)
r /

∑m
r=1

∑m
j=1 Srjλ

∗(∞)
j .
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The equation for the error propagation matrix, Jrs ≡ ∂λ
(∞)
r

∂ys
, can be obtained by differen-

tiating Eq. 85 w.r.t. ys. In the matrix notation, this equation is

J = (α(∞)S+A) (M+BJ) , (86)

where

Ajq =

(
1− α(∞)

∑m
r=1 Srq

)
λ
(∞)
j∑m

i=1 λ
(∞)
i

, (87)

Bjq =
δjq
ϵj

n∑
i=1

Kijyi∑m
ρ=1Kiρλ

(∞)
ρ

−
λ
(∞)
j

ϵj

n∑
i=1

KiqKijyi(∑m
ρ=1Kiρλ

(∞)
ρ

)2 , (88)

Mjq =
λ
(∞)
j

ϵj

Kqj∑m
ρ=1Kqρλ

(∞)
ρ

. (89)

The NPStat code solves the equivalent equation, (I−(α(∞)S+A)B)J = (α(∞)S+A)M, using
the LU factorization algorithm as implemented in LAPACK [40], and then runs iterative
refinement cycles defined by Eq. 86 until convergence.

For unweighted samples, the covariance matrix of observations, V, can be derived au-
tomatically by NPStat according to either Poisson or multinomial distribution assumptions
using ŷi =

∑m
ρ=1Kiρλ

(∞)
ρ as mean values. In more complicated situations, the user is ex-

pected to provide the covariance matrix of observations23. The covariance matrix of unfolded
values is then estimated according to JVJT.

While the original expectation-maximization algorithm is agnostic about the dimension-
alities of x and y spaces, the smoothing step is, of course, dimensionality-specific. The
unfolding code is using smoothing filters constructed with the help of facilities described in
Section 6. The following classes implement unfolding with smoothing:

SmoothedEMUnfold1D (header file “npstat/stat/SmoothedEMUnfold1D.hh”) — unfolds
one-dimensional distributions using objects of LocalPolyFilter1D class as smoothing filters.

SmoothedEMUnfoldND (header file “npstat/stat/SmoothedEMUnfoldND.hh”) — unfolds
multivariate distributions. Dimensionalities of the x and y spaces can be arbitrary and
distinct. Dimensionality of the smoothing filter is, of course, expected to be consistent
with the structure of x. Typically, the filters will be objects of either LocalPolyFilterND or
SequentialPolyFilterND class, adapted for unfolding use by the UnfoldingFilterND template.
SmoothedEMUnfoldND code is employing a more efficient implementation of the response
matrix than the Matrix class used by the rest of NPStat code, but Eq. 86 is still solved using
normal dense matrices. Therefore, practically usable number of cells in the discretization
of the x space will be at most a few thousands, as the computational complexity of the
algorithm based on dense matrices is proportional to this number cubed.

23This may require running the unfolding code twice, first to obtain λ
(∞)
ρ , and then, when the covariance

matrix is constructed externally, to propagate the uncertainties. Note that unfolding with the expectation-
maximization algorithm intrinsically assumes Poisson distribution of the observed counts. If the covariance
matrix of observations is highly inconsistent with this assumption, it will be impossible to interpret the result
as a maximum likelihood estimate.
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8.3 Choosing the Smoothing Parameters

For likelihood-based inference, a useful model selection principle is provided by the Akaike
information criterion (AIC) [53]. The AIC criterion adjusted for the finite sample size is [54]

AICc = −2 lnL+ 2k +
2k(k + 1)

N − k − 1
, (90)

where L is the maximized value of the model likelihood, N is the sample size, and k the
number of parameters in the model. Selecting a model by minimizing AICc avoids overfitting
by reaching a compromise between complexity of the model and goodness-of-fit.

Application of the AICc criterion to the EMS unfolding procedure is, however, not com-
pletely straightforward. While calculation of the likelihood can be accomplished assuming
Poisson distribution in the space of observations, it is not immediately obvious how to count
the number of parameters in the model. To overcome this difficulty, NPStat assumes that
the number of model parameters can be estimated as the effective rank of the KJJTKT

matrix. This assumption is based on the following reasoning24. The covariance matrix of
the fitted folded values (i.e., ŷi) is Vŷ(V) = KJVJTKT. If, using polynomial series, one fits
multiple independent samples of random points taken from the uniform distribution, with
the number of points per sample varying according to the Poisson distribution, the rank of
the covariance matrix of the fitted unnormalized density values calculated over these samples
will be equal to the degree of the fittted polynomial plus one. This is precisely the number
of parameters of the fitted model. It doesn’t matter how many abscissae are used to con-
struct the covariance matrix of the fitted values as long as the number of abscissae exceeds
the degree of the polynomial and the average number or points in a sample is “sufficiently
large”. While the model fitted to the observed values by the EMS unfolding method isn’t
polynomial, we can still identify some measure of the rank of Vŷ(I) = KJJTKT with the
number of model parameters.

Two different definitions of the effective rank of a symmetric positive-semidefinite matrix
(say, Q) are implemented. The first one is the exponent of the von Neumann entropy of
Q/tr(Q). In terms of the Q eigenvalues, ei, it is expressed as25

erank1(Q) = exp

{
−

n∑
i=1

ei
∥e∥

ln

(
ei
∥e∥

)}
, ∥e∥ =

n∑
i=1

ei. (91)

The second is the ratio of the matrix trace to the largest eigenvalue:

erank2(Q) =
tr(Q)

max1≤i≤n ei
=

∥e∥
max1≤i≤n ei

. (92)

These effective ranks are calculated by the symPSDefEffectiveRank method of the NPStat
Matrix class. From some initial experimentation with simple models, it appears that setting

24One can also argue that the KJ matrix plays similar role to the hat matrix in linear regression problems.
This leads to the same conclusion about the number of model parameters.

25Naturally, erank1(Q) is also the exponent of the Shannon entropy of the normalized eigenspectrum.
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k in Eq. 90 to either erank1(KJJTKT) or erank2(KJJTKT) works well, as both of these
ranks have similar derivatives w.r.t. filter bandwidth. The corresponding AICc criteria will
be called EAICc (E in this abbreviation stands for “entropic”) and TAICc (T stands for
“trace”).

For any smoothing filter, the most important parameter regulating its functionality is
the bandwidth. NPStat provides the following classes which facilitate the studies of AICc

criteria and unfolding performance vs. filter bandwidth:
UnfoldingBandwidthScanner1D (header “npstat/stat/UnfoldingBandwidthScanner1D.hh”)

— simplifies and speeds up studies of 1-d EMS unfolding results obtained with multiple band-
width values. Filters constructed for different bandwidth settings are stored internally and do
not have to be recomputed when multiple observed samples are processed. Effective ranks of
the KJJTKT matrices are memoized as well. The bandwidth which optimizes either EAICc

or TAICc criterion can be automatically searched for by calling the processAICcBandwidth
method of this class. Typical class usage is illustrated by the “ems unfold 1d.cc” example
program located in the “examples/C++” subdirectory of the NPStat package.

UnfoldingBandwidthScannerND (header “npstat/stat/UnfoldingBandwidthScannerND.hh”)
— assists in studies of multivariate EMS unfolding results obtained with multiple bandwidth
settings. SequentialPolyFilterND class is used internally to generate multivariate filters ac-
cording to the user-provided bandwidth values in each dimension of the x space. The filters
and the effective ranks are memoized, but there is no automatic procedure to determine the
optimal bandwidth set26.

Use of an effective rank to determine the number of model parameters leads to the
requirement that the number of discretization cells in the observation space y should be
substantially larger than this rank. This condition should be verified once the EMS unfolding
is performed with the optimal filter.

If the unfolded values of p(x) are expected to become close to 0 somewhere in the x region
considered, it is important to choose a type of filter that guarantees the non-negativity of
the smoothed result27. All LOrPE filters of degree zero have this property.

8.4 Large Problems with Sparse Matrices

The standard matrix multiplication methods and the LU factorization algorithm used to
solve Eq. 86 have O(m3) computational complexity, where m is the number of cells used
to discretize the physical process space. For programs running on a single processor, this
complexity effectively limits m to a few thousands. However, in many practically important
applications the response function is sufficiently short-ranged so that most elements of its

26The UnfoldingBandwidthScannerND class is designed to speed up repetitive mutidimensional grid scans.
For more sophisticated algorithms searching for a function minimum in multiple dimensions, the strategy of
memoizing a lot of intermediate results for each point considered will not be optimal.

27The code will automatically truncate negative filtered values but this truncation will lead to distortions
in the covariance matrix of unfolded results not taken into account by linear error propagation formulae.
A highly inappropriate choice of filter can even break the expectation-maximization iterations by producing
ŷi = 0 corresponding to a positive yi value.
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discretized representation Kij are zeros. In such situations it may be advantageous to utilize
techniques and algorithms developed for sparse matrices in order to increase m.

NPStat provides a header-only EMS unfolding implementation based on sparse matrix
arithmetic in the namespace “emsunfold”. In order to take advantage of this code, two
additional software packages have to be installed by the user. NPStat relies on Eigen [55]
for basic operations with sparse matrices and for solving sparse linear systems. The package
TRLAN [56] is used for calculating leading eigenvalues and eigenvectors of large covariance
matrices28. The following classes implement EMS unfolding with sparse matrices:

SmoothedEMSparseUnfoldND (header “npstat/emsunfold/SmoothedEMSparseUnfoldND.hh”)
— parallels the functionality of the SmoothedEMUnfoldND class, with a few peculiarities re-
lated to the sparseness of various matrices. In particular, only Poisson uncertainties on
the observed data can be calculated automatically, as multinomial covariances would not
be sparse. User-provided uncertainties are restricted to diagonal matrices. The smoothing
matrix should be doubly stochastic29, otherwise Eq. 87 will inject a dense matrix into the
system.

SparseUnfoldingBandwidthScannerND— parallels the functionality of UnfoldingBandwidth-
Scanner1D, with additional input parameters and diagnostic outputs needed to drive deter-
mination of eigenvalues and eigenvectors of large covariance matrices. This class is declared
in the header file “npstat/emsunfold/SparseUnfoldingBandwidthScannerND.hh”.

9 Pseudo- and Quasi-Random Numbers

The C++11 Standard [3] defines an API for generating pseudo-random numbers. Unfor-
tunately, this API suffers from a disconnect between modeling of statistical distributions
(including densities, cumulative distributions, etc) and generation of random numbers. More-
over, quasi-random numbers [57] useful for a large variety of simulation and data analysis
purposes are not represented by the Standard, and there is no meaningful support for gen-
erating genuinely multivariate random sequences.

NPStat adopts a different approach towards generation of pseudo-random, quasi-random,
and non-random sequences — the one that is more appropriate in the context of a statistical
analysis package. A small number of high-quality generators is implemented for producing
such sequences on a unit d-dimensional cube. All such generators inherit from the same ab-
stract base class AbsRandomGenerator (header file “npstat/rng/AbsRandomGenerator.hh”).
Generators developed or ported by users can be seamlessly added as well. Conversion of
uniformly distributed sequences into other types of distributions and to different support
regions is performed by the classes that represent statistical distributions — in particular,

28I am not aware of any method for calculating all eigenvalues and eigenvectors of a symmetric positive-
semidefinite matrix, sparse or not, with computational complexity better than O(m3).

29That is, each row and column of the smoothing matrix should sum to 1, within the tolerance parameter
of the unfolding algorithm. Construction of doubly stochastic filters with NPStat is discussed in Section 6.3.
Double stochasticity is not enforced by the code itself, as it is often useful to benchmark the results obtained
with sparse matrices against an implementation utilizing dense matrices.
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by those classes which inherit from AbsDistribution1D and AbsDistributionND bases. Both of
these bases have a virtual method random which takes a sequence generator instance as an
input and produces correspondingly distributed numbers (random or not) on output. By
default, transformation of sequences is performed by the quantile method for one-dimensional
distributions and by unitMap method for multivariate ones. However, it is expected that the
random method itself will be overriden by the derived classes when it is easier, for example, to
make a random sequence with the desired properties by the acceptance-rejection technique.
The following functions and classes are implemented:

MersenneTwister (header file “npstat/rng/MersenneTwister.hh”) — generates pseudo-
random numbers using the Mersenne Twister algorithm [58].

SobolGenerator (header file “npstat/rng/SobolGenerator.hh”) — generates Sobol quasi-
random sequences [59].

HOSobolGenerator (header file “npstat/rng/HOSobolGenerator.hh”) — generates higher
order scrambled Sobol sequences [60].

RandomSequenceRepeater (header file “npstat/rng/RandomSequenceRepeater.hh”) — this
class can be used to produce multiple repetitions of sequences created by other generators
whenever an instance of AbsRandomGenerator is needed. The whole sequence is simply re-
membered (which can take a significant amount of memory for large sequences) and extended
as necessary by calling the original generator.

WrappedRandomGen (header file “npstat/rng/AbsRandomGenerator.hh”) — a simple
adaptor class for “old style” random generator functions like “drand48()”. Implements Ab-
sRandomGenerator interface.

CPP11RandomGen (header file “npstat/rng/CPP11RandomGen.hh”) — a simple adaptor
class for pseudo-random generator engines defined in the C++11 standard. Implements
AbsRandomGenerator interface.

EquidistantSampler1D (header file “npstat/rng/EquidistantSampler1D.hh”) — generates
a sequence of equidistant points, similar to bin centers of a histogram with axis limits at 0
and 1.

RegularSampler1D (header file “npstat/rng/RegularSampler1D.hh”) — generates a se-
quence of points by splitting the [0, 1] interval by 2, then splitting all subintervals by 2, etc.
The points returned are the split locations. Useful for generating 2k − 1 points when integer
k is not known in advance.

convertToSphericalRandom (header file “npstat/rng/convertToSphericalRandom.hh”) —
converts a multivariate random number from a unit d-dimensional cube into a random di-
rection in d dimensions and one additional random number between 0 and 1. Useful for
generating random numbers according to spherically symmetrical distributions.

10 Algorithms Related to Combinatorics

The NPStat package implements several functions and algorithms related to permutations
of integers and combinatorics:

factorial (header file “npstat/rng/permutation.hh”) — this function returns an exact
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factorial if the result does not exceed the largest unsigned long (up to 12! on 32-bit systems
and up to 20! on 64-bit ones).

ldfactorial (header file “npstat/rng/permutation.hh”) — this function returns an approx-
imate factorial up to 1754! as a long double.

logfactorial (header file “npstat/rng/permutation.hh”) — natural logarithm of a factorial,
up to ln((232 − 1)!), as a long double.

binomialCoefficient (header file “npstat/nm/binomialCoefficient.hh”) — calculates the bi-
nomial coefficients CM

N = N !
M !(N−M)!

using an algorithm which avoids overflows.

orderedPermutation (header file “npstat/rng/permutation.hh”) — this function can be
used to iterate over permutations of numbers {0, 1, ..., N−1} in a systematic way. It generates
a unique permutation of such numbers given a non-negative input integer below N !.

permutationNumber (header file “npstat/rng/permutation.hh”) — inverse of orderedPer-
mutation: maps a permutation of numbers {0, 1, ..., N − 1} into a unique integer between 0
and N !.

randomPermutation (header file “npstat/rng/permutation.hh”) — generates random per-
mutations of numbers {0, 1, ..., N−1} in which probability of every permutation is the same.

NMCombinationSequencer (header file “npstat/stat/NMCombinationSequencer.hh”) —
this class iterates over all possible choices of j1, ..., jM from N possible values for each jk in
such a way that all j1, ..., jM are distinct and appear in the sequence in the increasing order,
last index changing most often. Naturally, the total number of all such choices equals to the
number of ways to pick M distinct items out of N : it is the binomial coefficient CM

N .

11 Numerical Analysis Utilities

The NPStat package includes a menagerie of numerical analysis utilities designed, primarily,
to support the statistical calculations described in the previous sections. They are placed in
the “nm” directory of the package. A number of these utilities can be used as stand-alone
tools. If the corresponding header file is not mentioned explicitly in the descriptions below, it
is “npstat/nm/NNNN.hh”, where NNNN stands for the actual name of the class or function.

ConvolutionEngine1D and ConvolutionEngineND — These classes encapsulate the NPStat
interface to the FFTW package [61]. They can be used to performs DFFT convolutions of
one-dimensional and multivariate functions, respectively.

EquidistantInLinearSpace (header file “npstat/nm/EquidistantSequence.hh”) — A sequence
of equidistant points. For use with algorithms that take a vector of points as one of their
parameters.

EquidistantInLogSpace (header file “npstat/nm/EquidistantSequence.hh”) — A sequence
of points whose logarithms are equidistant.

findRootInLogSpace — templated numerical equation solving for 1-d functions (or for 1-d
subspaces of multivariate functions) using interval division. It is assumed that the solution
can be represented as a product of some object (e.g., a vector) by a positive real number,
and that number is then searched for.
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GaussHermiteQuadrature and GaussLegendreQuadrature — templated Gauss-Hermite and
Gauss-Legendre quadratures for one-dimensional functions. Internally, calculations are per-
formed in long double precision. Of course, lower precision functions can be integrated as
well, with corresponding reduction in the precision of the result.

rectangleIntegralCenterAndSize (header file “npstat/nm/rectangleQuadrature.hh”) —Gauss-
Legendre cubatures on rectangular and hyperrectangular domains using tensor product in-
tegration30.

goldenSectionSearchInLogSpace (header file “npstat/nm/goldenSectionSearch.hh”) — tem-
plated numerical search for a minimum of 1-d functions (or for 1-d subspaces of multivariate
functions) using the golden section method. It is assumed that location of the minimum can
be represented as a product of some object (e.g., a vector) by a positive constant, and that
constant is then searched for.

goldenSectionSearchOnAGrid (header file “npstat/nm/goldenSectionSearch.hh”) — search
for a minimum using coordinates restricted to a user-defined one-dimensional grid. Appro-
priate for use with functions which are expensive to evaluate and for which the user has
some prior idea about their smoothness.

parabolicExtremum (header file “npstat/nm/MathUtils.hh”) – determine extremum of
a parabola passing through three given points on a plane. Can be used in combination with
goldenSectionSearchOnAGrid to refine location of the minimum.

GridAxis — This class can be used to define an axis of a rectangular grid with non-
uniform spacing of points. The complementary class UniformAxis works more efficiently
for representing equidistant points, while the class DualAxis can be used to represent both
uniform and non-uniform grids.

interpolate linear, interpolate quadratic, interpolate cubic (these three functions are de-
clared in the header file “npstat/nm/interpolate.hh”) — linear, quadratic, and cubic poly-
nomials with given values at two, three, and four equidistant points, respectively.

LinInterpolatedTable1D — persistent one-dimensional lookup table with linear interpola-
tion between the tabulated values. Useful for representing arbitrary one-dimensional func-
tions in case the full numerical precision is not required. If the table is monotonous, the
inverse table can be constructed automatically.

LinInterpolatedTableND — persistent multidimensional lookup table with multilinear in-
terpolation between the tabulated values, as in Eq 25. Extrapolation beyond the grid bound-
aries is supported as well. This class is useful for representing arbitrary functions in case
the full numerical precision is not required. GridAxis, UniformAxis, or DualAxis class (or user-
developed classes with similar sets of methods) can be used to define grid point locations.
Note that simple location-based lookup of stored values (without interpolation) can be triv-
ially performed with the closestBin method of the HistoND class. Lookup of histogram bin
values with interpolation can be performed by the interpolateHistoND function (header file
“npstat/stat/interpolateHistoND.hh”).

30“Tensor product integration” simply means that the locations at which the function is evaluated and
corresponding weights are determined by sequential application of Gauss-Legendre quadratures in each di-
mension.
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LinearMapper1d, LogMapper1d — linear and log-linear transformations in 1-d as functors
(with “double operator()(const double& x) const” method defined). The CircularMapper1d
class works similarly to LinearMapper1d in situations with circular data topologies.

Matrix — A templated matrix class. Useful for standard matrix manipulations, solving
linear systems, finding eigenvalues and eigenvectors of symmetric matrices, singular value
decomposition, etc. Encapsulates NPStat interface to LAPACK [40].

findPeak3by3, findPeak5by5 (header file “npstat/nm/findPeak2D.hh”) — utilities which
facilitate peak finding for two-dimensional surfaces which can be contaminated by small
amounts of noise (e.g., from round-off errors). The user can fit a 2-d quadratic polynomial
inside a 3× 3 or 5× 5 window by least squares31 and check whether that polynomial has an
extremum inside the window. Initially intended for studying 2-d log-likelihoods using sliding
windows.

solveQuadratic, solveCubic (header file “npstat/nm/MathUtils.hh”) — solutions of quadratic
and cubic equations, respectively, by numerically sound methods32.

ndUnitSphereVolume (header file “npstat/nm/MathUtils.hh”) — volume of the n-dimensional
unit sphere.

polyAndDeriv (header file “npstat/nm/MathUtils.hh”) — monomial series
∑M

k=0 ckx
k and

its derivative with respect to x, templated on the type of coefficients ck.
polySeriesSum, legendreSeriesSum, gegenbauerSeriesSum, chebyshevSeriesSum (all of these

functions are declared in the header file “npstat/nm/MathUtils.hh”) — templated series of
one-dimensional monomials, Legendre polynomials, Gegenbauer polynomials, and Cheby-
shev polynomials, respectively. Numerically sound recursive formulae are used to generate
the polynomials.

hermiteSeriesSumProb, hermiteSeriesSumPhys (header file “npstat/nm/MathUtils.hh”) —
templated series of “probabilist” and “physicist” Hermite polynomials, respectively.

chebyshevSeriesCoeffs (header file “npstat/nm/MathUtils.hh”) — utility for approximat-
ing mathematical functions with Chebyshev polynomials.

OrthoPoly1D, OrthoPolyND — uni- and multivariate orthogonal polynomials on equidis-
tant rectangular grids with arbitrary weight functions. In addition to producing the polyno-
mials themselves, these classes can be used to calculate polynomial series, polynomial series
expansion coefficients for gridded functions, and polynomial filters defined by Eq. 46 (but
normalized so that the sum of filter coefficients is 1).

The NPStat package also includes implementations of various special functions needed in
statistical calculations (incomplete gamma function and its inverse, incomplete beta function,
etc). These functions are declared in the header file “npstat/nm/SpecialFunctions.hh”.

31A fast method utilizing discrete orthogonal polynomial expansion is used internally.
32The textbook formula x1,2 = −b±

√
b2−4ac
2a for the roots of quadratic equation ax2 + bx + c = 0 is also

a prime example of a numerical analysis pitfall. A minimal modification, x1 = − b+(I(b≥0)−I(b<0))
√
b2−4ac

2a ,
x2 = c

ax1
, avoids the subtractive cancellation problem in the x1,2 numerator.
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Functions and Classes

AbsArrayProjector, 10
AbsBandwidthCV1D, 36
AbsBandwidthCVND, 36
AbsBoundaryFilter1DBuilder, 31
AbsDiscreteDistribution1D, 15
AbsDistribution1D, 10, 15, 53
AbsDistributionND, 15, 16, 26, 53
AbsMultivariateFunctor, 45
AbsNtuple, 4, 6
AbsRandomGenerator, 52, 53
AbsScalableDistribution1D, 10
AbsScalableDistributionND, 15
AbsVisitor, 10
amiseOptimalBwGauss, 25, 26
amiseOptimalBwSymbeta, 26
amisePluginBwGauss, 26
amisePluginBwSymbeta, 26
ArchivedNtuple, 4
arrayCoordCovariance, 8
arrayCoordMean, 8
arrayEntropy, 9
ArrayMaxProjector, 9
ArrayMeanProjector, 9
ArrayMedianProjector, 9
ArrayMinProjector, 9
ArrayND, 3, 4, 8–10
arrayQuantiles1D, 8, 9
ArrayRangeProjector, 9
arrayShape1D, 8, 26
arrayStats, 5
ArrayStdevProjector, 9
ArraySumProjector, 9

BandwidthCVLeastSquares1D, 36
BandwidthCVLeastSquaresND, 36
BandwidthCVPseudoLogli1D, 36
BandwidthCVPseudoLogliND, 36
BernsteinFilter1DBuilder, 34
Beta1D, 11
BetaFilter1DBuilder, 34

betaKernelsBandwidth, 34
BifurcatedGauss1D, 11
BinnedCompositeJohnson, 15
BinnedDensity1D, 9, 12, 15, 36
BinnedDensityND, 16, 22
binomialCoefficient, 54

calculateEmpiricalCopula, 18
Cauchy1D, 11
cdf, 10, 15
CensoredQuantileRegressionOnHisto, 43
CensoredQuantileRegressionOnKDTree, 42, 43
chebyshevSeriesCoeffs, 56
chebyshevSeriesSum, 56
CircularMapper1d, 56
closestBin, 55
CompositeDistribution1D, 14
CompositeDistributionND, 17, 31
ConstantBandwidthSmoother1D, 26
ConstantBandwidthSmootherND, 26, 27
convertToSphericalRandom, 53
ConvolutionEngine1D, 54
ConvolutionEngineND, 54
convolve, 31, 34
CopulaInterpolationND, 22
coveringBox, 36
CPP11RandomGen, 53
CrossCovarianceAccumulator, 7
cycleOverRows, 6

DeltaMixture1D, 12
density, 10, 15
DiscreteTabulated1D, 15
DistributionMix1D, 12
doublyStochasticFilter, 34
DualAxis, 55
DualHistoAxis, 4

empiricalCdf, 5, 7
empiricalCopulaDensity, 18, 27, 31
empiricalCopulaHisto, 18, 27, 31
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empiricalQuantile, 6, 7
EquidistantInLinearSpace, 54
EquidistantInLogSpace, 54
EquidistantSampler1D, 53
exceedance, 10, 15
Exponential1D, 11

factorial, 53
FGMCopula, 17
fill, 4
fillC, 4
filter, 31, 34
findPeak3by3, 56
findPeak5by5, 56
findRootInLogSpace, 54

Gamma1D, 11
Gauss1D, 11
GaussHermiteQuadrature, 54
GaussianCopula, 17
gaussianMISE, 26
GaussianMixture1D, 11, 26
GaussLegendreQuadrature, 55
gegenbauerSeriesSum, 56
getBoundaryFilter1DBuilder, 31
goldenSectionSearchInLogSpace, 55
goldenSectionSearchOnAGrid, 55
GridAxis, 55
griddedRobustRegression, 45
GriddedRobustRegressionStop, 45
GridInterpolatedDistribution, 22

hermiteSeriesSumPhys, 56
hermiteSeriesSumProb, 56
HistoAxis, 4
histoCovariance, 8
histoMean, 8
HistoND, 4, 7, 8, 55
HistoNDCdf, 36
HomogeneousProductDistroND, 15
HOSobolGenerator, 53
Huber1D, 11

InMemoryNtuple, 4

interpolate cubic, 55
interpolate linear, 55
interpolate quadratic, 55
InterpolatedDistribution1D, 20
InterpolatedDistro1D1P, 20
InterpolatedDistro1DNP, 20
interpolateHistoND, 55
isDensity, 8
IsoscelesTriangle1D, 11

JohnsonKDESmoother, 26
JohnsonLadder, 14, 15
JohnsonSb, 13
JohnsonSu, 13
JohnsonSystem, 14

KDECopulaSmoother, 27, 31, 36
KDEFilterND, 27
KDTree, 40
kendallsTauFromCopula, 18

ldfactorial, 54
LeftCensoredDistribution, 12
legendreSeriesSum, 56
linearLoss, 42
LinearMapper1d, 55, 56
LinInterpolatedTable1D, 55
LinInterpolatedTableND, 45, 55
LocalPolyFilter1D, 26, 30, 31, 34, 38, 49
LocalPolyFilterND, 31, 38, 39, 49
LocalQuadraticLeastSquaresND, 39
LocationScaleFamily1D, 12
logfactorial, 54
Logistic1D, 11
LogisticRegressionOnGrid, 40
LogisticRegressionOnKDTree, 40, 42
LogMapper1d, 56
LogNormal, 14
LogQuadratic1D, 11, 14, 15
LOrPECopulaSmoother, 27, 31, 36
lorpeMise1D, 31

mappedByQuantiles, 22
Matrix, 49, 50, 56
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MersenneTwister, 53
minuitLocalQuantileRegression1D, 43
minuitLogisticRegressionOnGrid, 40
minuitQuantileRegression, 43
minuitQuantileRegressionIncrBW, 43
minuitUnbinnedLogisticRegression, 40
MirroredGauss1D, 11
miseOptimalBw, 26
Moyal1D, 11
MultivariateSumAccumulator, 6
MultivariateSumsqAccumulator, 6
MultivariateWeightedSumAccumulator, 6
MultivariateWeightedSumsqAccumulator, 6

ndUnitSphereVolume, 56
NMCombinationSequencer, 54
NonmodifyingFilter1DBuilder, 31
NonparametricCompositeBuilder, 31
NUHistoAxis, 4

orderedPermutation, 54
OrthoPoly1D, 56
OrthoPolyND, 56

parabolicExtremum, 55
Pareto1D, 11
permutationNumber, 54
Poisson1D, 15
polyAndDeriv, 56
PolyFilterCollection1D, 31
polySeriesSum, 56
pooledDiscreteTabulated1D, 15
probability, 15
processAICcBandwidth, 51
ProductDistributionND, 16
ProductSymmetricBetaND, 16
project, 9, 10

Quadratic1D, 11
QuadraticOrthoPolyND, 39
quantile, 9, 10, 15, 53
QuantileRegression1D, 41, 43
QuantileRegressionOnHisto, 42, 43
QuantileRegressionOnKDTree, 41, 43

QuantileTable1D, 12

RadialProfileND, 16
random, 15, 53
randomPermutation, 54
RandomSequenceRepeater, 53
RatioOfNormals, 12
rectangleIntegralCenterAndSize, 55
RegularSampler1D, 53
RightCensoredDistribution, 12

SampleAccumulator, 7
sampleKendallsTau, 8
sampleSpearmansRho, 8
ScalableGaussND, 16
ScalableHuberND, 16
ScalableSymmetricBetaND, 16
SequentialCopulaSmoother, 31, 36
SequentialPolyFilterND, 31, 33, 38, 49, 51
ShiftableDiscreteDistribution1D, 15
simpleVariableBandwidthSmooth1D, 27
SmoothedEMSparseUnfoldND, 52
SmoothedEMUnfold1D, 49
SmoothedEMUnfoldND, 49, 52
SobolGenerator, 53
solveCubic, 56
solveQuadratic, 56
SparseUnfoldingBandwidthScannerND, 52
spearmansRhoFromCopula, 18
spearmansRhoFromCopulaDensity, 18
StatAccumulator, 6, 7
StatAccumulatorArr, 7
StatAccumulatorPair, 7
StorableHistoNDFunctor, 45, 46
StorableInterpolationFunctor, 45, 46
StudentsT1D, 11
symbetaLOrPEFilter1D, 31, 34
SymmetricBeta1D, 11, 23
symPSDefEffectiveRank, 50

Tabulated1D, 12
TCopula, 17
TransformedDistribution1D, 12
TruncatedDistribution1D, 11, 12
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TruncatedGauss1D, 11
TwoPointsLTSLoss, 45

UGaussConvolution1D, 11
UnfoldingBandwidthScanner1D, 51, 52
UnfoldingBandwidthScannerND, 51
UnfoldingFilterND, 49
Uniform1D, 11
UniformAxis, 55
UniformND, 16
unitMap, 15, 53
UnitMapInterpolationND, 22

variableBandwidthSmooth1D, 26, 27
VerticallyInterpolatedDistribution1D, 20

weightedLocalQuantileRegression1D, 43
WeightedLTSLoss, 45
WeightedSampleAccumulator, 7
WeightedStatAccumulator, 7
WeightTableFilter1DBuilder, 31
WrappedRandomGen, 53
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